- 相關推薦
數學基礎概論
數學基礎概論
摘要:對于數學這門學問,當我們從它的最熟悉的部分出發時,可以在兩個相反的方向進行研究。比較熟悉的方向是構造性的,逐步增強復雜程度:從整數到分數實數復數;從加法到乘法到微分和積分,以至更高等的數學。另1較為生疏的方向,是通過分析走向抽象性和邏輯簡單性;我們不討論從假定的起點開始可以定義什么或可以演繹什么,而去探討能夠找到什么可以由之定義或演繹出我們的出發點的1般思想。羅素在《數學哲學導論》中所說的后1方向既數學哲學或數學基礎。我們難以確切地說出數學基礎所研究的具體對象,但我們可以這樣粗略地理解數學基礎的內容,即:給現存數學1個穩固的基礎,1個合理的解釋,1種完美統1的形式,通過這種形式可以演繹全部現存數學。也許這只是1個理想,但仍然可以作為數學基礎研究的1個終極目標。在這篇文章里,先討論數學基礎的1些重要問題;然后簡述3個學派的起因,成果以及他們所面臨的困境;接著介紹結構主義的基本觀點;最后試著給出關于數學基礎的1些基本看法,這也是本文所要完成的最后1個目標。
關鍵詞:數學基礎;無限;存在;真理;相容性;邏輯主義;直覺主義;形式主義;公理化;結構;集合論
Introduction to Foundations of Mathematics
Abstract: As to the science of mathematics, we can make our research toward two opposite directions when we begin from the most familiar part. The comparative familiar diction is about structure. Increasing the degree of complexity gradually, which is from integer to fraction, real number and plural, from addition to multiplication, differentiation and integration, even get to more advanced mathematics. The other comparative strange direction is to reach abstraction and logical simplicity through analysis. However, we do not discuss what we can definite deduct when beginning with presumption, but to explore the general ideas of our point of departure we find out to definite and deduct. In Introduction to Mathematical Philosophy, the later view as Russel refer to is about mathematical philosophy and foundations of mathematics. Although we can not exact tell the concrete object the foundations of mathematics research into, we can understand its content in general. That is to say, we endow present mathematics with a stable basis, a reasonable explanation and a perfect and united form. And through this form, we can deduct the whole present mathematics. Maybe this only to be a dream, but we can still take it as a terminal goal in foundations of mathematics studies. In this passage, well first discuss several important issues about the foundations of mathematics. Then, well state in brief the origin and outcomes of three schools, and the hardship they are facing. Next, well introduce the elemental views of structuralism. At last, well try to put forward a few basic opinions about the foundations of mathematics. And this is also the final aim we want to attain.
Keywords: foundations of mathematics; unlimitation; existece; truth; compatibility; logicism; intuitionalism; formalism; axio matization structure; set theory
前 言
關于數學基礎的討論在柏拉圖時代就開始了,由柏拉圖發展起來的唯理論在現代數學中仍有重要的地位,之后數學基礎問題也不間斷地被討論到,而數學基礎發展的輝煌時期卻是19世紀末期及20世紀前310年。
當實數的理論建立后,分析的基礎也正式確立了,而代數學也從當時的紊亂中走了出來,并且非歐幾何的相容性問題也由歐氏幾何得出,這樣,到1900年為止,數學的主要分支—算術,代數,分析及幾何已經被嚴密化,而且邏輯學在當時也得到了極大的豐富和發展。面對這種情景,數學家們欣喜不已,就像彭加勒在第2次國際數學家大會上所說的:“今天我們可以宣稱絕對的嚴密已經實現了!”。
然而情況真的如此嗎?數學已經有了1個可靠的基礎了嗎?就在這時,集合論的幽靈已經出現,數學史上的第3次數學危機正在醞釀,而羅素打開了潘多拉的盒子,它們將再1次考驗數學家們。1903年,羅素發表了羅素悖論,即:設N是由所有不屬于自身的集合組成的集合,那么N有屬于誰呢?若N屬于N,按照定義不應如此;若N不屬于N,則依定義其應屬于N。其實在羅素悖論發表之前,已經在集合論的基數理論和序數理論中發現了悖論,之后也構造了好些悖論,然而以羅素悖論最為有名,這1悖論動搖了元素的類這1在數學中廣泛應用的概念,希爾伯特稱這個悖論對數學界有著災難性的后果。
為了解決悖論,以及由此而引起的數學基礎問題,特別是相容性問題及數學本性問題,數學家們做出了各種努力,嘗試為數學提供1個可靠的基礎。我們就從數學基礎中最為關心的重要數學基礎問題開始我們的敘述,接著討論基礎學派所做的各種努力,然后著重分析數學的困境和數學的本性,最后給出自己的1個初步結果,試圖從困境中走出來,達到對數學的1種整體的理解,給數學1個合理的解釋,這就是自己要達到的目標。
【包括:畢業論文、開題報告、任務書】
【說明:論文中有些數學符號是編輯器編輯而成,網頁上無法顯示或者顯示格式錯誤,給您帶來不便請諒解!
【數學基礎概論】相關文章:
全科醫學概論論文01-01
關于森林經營體系概論03-17
土木工程概論論文06-03
土木工程概論的論文05-19
土木工程概論論文07-08
大一自動化概論論文06-12
鑒于學生基礎高校數學教學及考核對策思索11-17
生命科學概論論文(精選7篇)01-25
土木工程概論課程論文11-22