1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 切比雪夫不等式的推廣與應(yīng)用

        時間:2023-03-07 08:15:57 數(shù)學(xué)畢業(yè)論文 我要投稿
        • 相關(guān)推薦

        切比雪夫不等式的推廣與應(yīng)用

        切比雪夫不等式的推廣與應(yīng)用

        摘要:在估計某些事件的概率的上下界時,常用到著名的切比雪夫不等式.本文從4個方面對切比雪夫不等式進(jìn)行推廣,討論了切比雪夫不等式在8個方面的應(yīng)用,并證明了隨機(jī)變量序列服從大數(shù)定理的1個充分條件.最后給出了切比雪夫不等式其等號成立的充要條件,并用現(xiàn)代概率方法重新證明了切比雪夫不等式.

        關(guān)鍵詞:切比雪夫不等式;隨機(jī)變量序列;強(qiáng)大數(shù)定理;幾乎處處收斂;大數(shù)定理.
                              
        The Popularization and Application of Chebyster’s Inequality

        Abstract:The famous Chebyshev’s Inequality is usually used when estimating the boundary from above or below of probability . The paper presents popularization from four respects. First, the paper discusses its application in eight aspects and demonstrates a complete condition that the foundation of random number sequence coconforms to he Law of Large Numbers  theorem. And then , the author analyzes its complete and necessary condition for foundation of Chebyshev’s Ineuquality. Furthermore, the paper makes a demonstration again for Chebyshev’s Inequality with the method of modern probability.

        Key words: Cherbyshev’ Inequality; Random number sequence; Law of Large Numbers; Almost Everywhere Convergence;Law of Strong Large Numbers.

        目 錄

        中文標(biāo)題……………………………………………………………………………………………1
        中文摘要、關(guān)鍵詞…………………………………………………………………………………1
        英文標(biāo)題……………………………………………………………………………………………1
        英文摘要、關(guān)鍵詞…………………………………………………………………………………1
        正文
        §1 引言……………………………………………………………………………………………2
        §2切比雪夫不等式的推廣 ………………………………………………………………………2
        §3切比雪夫不等式的應(yīng)用 ………………………………………………………………………5
        3.1 利用切比雪夫不等式說明方差的意義………………………………………………………5
        3.2 估計事件的概率………………………………………………………………………………5
        3.3  說明隨機(jī)變量取值偏離EX超過3 的概率很小 ……………………………………………7
        3.4 求解或證明有關(guān)概率不等式…………………………………………………………………7
        3.5 求隨機(jī)變量序列依概率的收斂值……………………………………………………………9
        3.6 證明大數(shù)定理…………………………………………………………………………………11
        3.7 證明強(qiáng)大數(shù)定理………………………………………………………………………………12
        3.8 證明隨機(jī)變量服從大數(shù)定理的1個充分條件………………………………………………20
        §4切比雪夫不等式等號成立的充要條件 ………………………………………………………22
        §5 結(jié)束語…………………………………………………………………………………………25
        參考文獻(xiàn)……………………………………………………………………………………………26
        致謝…………………………………………………………………………………………………27


        【包括:畢業(yè)論文、開題報告、任務(wù)書】

        【說明:論文中有些數(shù)學(xué)符號是編輯器編輯而成,網(wǎng)頁上無法顯示或者顯示格式錯誤,給您帶來不便請諒解!

        【切比雪夫不等式的推廣與應(yīng)用】相關(guān)文章:

        液氫的生產(chǎn)及應(yīng)用09-12

        網(wǎng)絡(luò)推廣開題報告11-05

        淺談MOF材料的應(yīng)用04-21

        從柳宗元的“以俟夫觀人風(fēng)者得焉”看唐代的避諱05-29

        市場推廣策略開題報告10-10

        電子商務(wù)應(yīng)用論文11-02

        計算機(jī)應(yīng)用論文02-15

        納米材料在電池中的應(yīng)用08-05

        審計風(fēng)險模型的演進(jìn)及應(yīng)用08-26

        淺議核分析技術(shù)這門應(yīng)用科學(xué)在生命科學(xué)中的應(yīng)用08-02

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>