1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 必修一函數知識點的總結

        時間:2022-03-24 16:24:37 學習總結 我要投稿

        必修一函數知識點的總結

          考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備,對于數學更加要進行復習歸納。下面必修一函數知識點總結是小編為大家帶來的,希望對大家有所幫助。

        必修一函數知識點的總結

          必修一函數知識點總結 篇1

          1. 函數的奇偶性

          (1)若f(x)是偶函數,那么f(x)=f(-x) ;

          (2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用于求參數);

          (3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

          (4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

          (5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

          2. 復合函數的有關問題

          (1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

          (2)復合函數的單調性由“同增異減”判定;

          3.函數圖像(或方程曲線的對稱性)

          (1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

          (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

          (3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

          (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

          (5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;

          (6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x= 對稱;

          4.函數的周期性

          (1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數;

          (2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

          (3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

          (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數;

          (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2 的周期函數;

          (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;

          5.方程k=f(x)有解 k∈D(D為f(x)的值域);

          6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

          7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);

          (3) l og a b的符號由口訣“同正異負”記憶; (4) a log a N= N ( a>0,a≠1,N>0 );

          8. 判斷對應是否為映射時,抓住兩點:(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

          9. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

          10.對于反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

          11.處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的`相對位置關系;

          12. 依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題

          13. 恒成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解;

          必修一函數知識點總結 篇2

          知識點總結

          本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性和函數的圖象等知識點。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性是學習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個知識點,函數的圖象就迎刃而解了。

          一、函數的單調性

          1、函數單調性的定義

          2、函數單調性的判斷和證明:(1)定義法 (2)復合函數分析法 (3)導數證明法 (4)圖象法

          二、函數的奇偶性和周期性

          1、函數的奇偶性和周期性的定義

          2、函數的奇偶性的判定和證明方法

          3、函數的周期性的判定方法

          三、函數的圖象

          1、函數圖象的作法

          (1)描點法

          (2)圖象變換法

          2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

          常見考法

          本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。

          誤區提醒

          1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問題定義域優先的原則”。

          2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。

          3、在多個單調區間之間不能用“或”和“ ”連接,只能用逗號隔開。

          4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關于原點對稱,則函數一定是非奇非偶函數。

          5、作函數的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數的圖象。

        【必修一函數知識點的總結】相關文章:

        高一化學必修一知識點總結08-30

        高一物理必修一知識點總結08-27

        高中化學必修一知識點總結08-26

        高一化學必修二知識點總結08-30

        高一物理必修二知識點總結08-29

        高一化學必修一知識點梳理08-30

        一次函數圖像應用知識點08-29

        高中化學必修二知識點總結08-29

        高中歷史必修一必背知識點08-27

        反比例函數知識點08-30

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>