備戰小升初小學數學知識點總結
小升初考試是學生升初中的重大考試,那么大家備考得如何了呢?下面內容由yjbys小編為大家帶來的備戰小升初小學數學知識點總結,歡迎大家學習!
1.和差倍問題
和差問題 和倍問題 差倍問題
已知條件 幾個數的和與差 幾個數的和與倍數 幾個數的差與倍數
公式適用范圍 已知兩個數的和,差,倍數關系
公式 ①(和-差)÷2=較小數
較小數+差=較大數
和-較小數=較大數
、(和+差)÷2=較大數
較大數-差=較小數
和-較大數=較小數
和÷(倍數+1)=小數
小數×倍數=大數
和-小數=大數
差÷(倍數-1)=小數
小數×倍數=大數
小數+差=大數
關鍵問題 求出同一條件下的
和與差 和與倍數 差與倍數
2.年齡問題的三個基本特征:
、賰蓚人的年齡差是不變的
、趦蓚人的年齡是同時增加或者同時減少的
、蹆蓚人的年齡的倍數是發生變化的
3.歸一問題的基本特點:
問題中有一個不變的量,一般是那個“單一量”,題目一般用“照這樣的速度”……等詞語來表示。
關鍵問題:根據題目中的條件確定并求出單一量;
4.植樹問題
基本類型 在直線或者不封閉的曲線上植樹,兩端都植樹 在直線或者不封閉的曲線上植樹,兩端都不植樹 在直線或者不封閉的曲線上植樹,只有一端植樹 封閉曲線上植樹
基本公式 棵數=段數+1
棵距×段數=總長 棵數=段數-1
棵距×段數=總長 棵數=段數
棵距×段數=總長
關鍵問題 確定所屬類型,從而確定棵數與段數的關系
5.雞兔同籠問題
基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;
基本思路:
、偌僭O,即假設某種現象存在(甲和乙一樣或者乙和甲一樣):
、诩僭O后,發生了和題目條件不同的差,找出這個差是多少;
、勖總事物造成的差是固定的,從而找出出現這個差的原因;
、茉俑鶕@兩個差作適當的調整,消去出現的差。
基本公式:
、侔阉须u假設成兔子:雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數)
、诎阉型米蛹僭O成雞:兔數=(總腳數一雞腳數×總頭數)÷(兔腳數一雞腳數)
關鍵問題:找出總量的差與單位量的差。
6.盈虧問題
基本概念:一定量的對象,按照某種標準分組,產生一種結果:按照另一種標準分組,又產生一種結果,由于分組的標準不同,造成結果的差異,由它們的關系求對象分組的組數或對象的總量.
基本思路:先將兩種分配方案進行比較,分析由于標準的差異造成結果的變化,根據這個關系求出參加分配的總份數,然后根據題意求出對象的總量.
基本題型:
①一次有余數,另一次不足;
基本公式:總份數=(余數+不足數)÷兩次每份數的差
、诋攦纱味加杏鄶;
基本公式:總份數=(較大余數一較小余數)÷兩次每份數的差
、郛攦纱味疾蛔;
基本公式:總份數=(較大不足數一較小不足數)÷兩次每份數的差
基本特點:對象總量和總的組數是不變的。
關鍵問題:確定對象總量和總的組數。
7.牛吃草問題
基本思路:假設每頭牛吃草的`速度為“1”份,根據兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。
基本特點:原草量和新草生長速度是不變的;
關鍵問題:確定兩個不變的量。
基本公式:
生長量=(較長時間×長時間牛頭數-較短時間×短時間牛頭數)÷(長時間-短時間);
總草量=較長時間×長時間牛頭數-較長時間×生長量;
8.周期循環與數表規律
周期現象:事物在運動變化的過程中,某些特征有規律循環出現。
周期:我們把連續兩次出現所經過的時間叫周期。
關鍵問題:確定循環周期。
閏 年:一年有366天;
、倌攴菽鼙4整除;②如果年份能被100整除,則年份必須能被400整除;
平 年:一年有365天。
、倌攴莶荒鼙4整除;②如果年份能被100整除,但不能被400整除;
9.平均數
基本公式:①平均數=總數量÷總份數
總數量=平均數×總份數
總份數=總數量÷平均數
、谄骄鶖=基準數+每一個數與基準數差的和÷總份數
基本算法:
①求出總數量以及總份數,利用基本公式①進行計算.
、诨鶞蕯捣ǎ焊鶕o出的數之間的關系,確定一個基準數;一般選與所有數比較接近的數或者中間數為基準數;以基準數為標準,求所有給出數與基準數的差;再求出所有差的和;再求出這些差的平均數;最后求這個差的平均數和基準數的和,就是所求的平均數,具體關系見基本公式。
10.抽屜原理
抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。
例:把4個物體放在3個抽屜里,也就是把4分解成三個整數的和,那么就有以下四種情況:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀察上面四種放物體的方式,我們會發現一個共同特點:總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。
抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:
、賙=[n/m ]+1個物體:當n不能被m整除時。
②k=n/m個物體:當n能被m整除時。
理解知識點:[X]表示不超過X的最大整數。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關鍵問題:構造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據抽屜原則進行運算。
更多相關文章推薦:
4.電路知識點總結
6.小學數學研修總結
7.小學數學公式總結
9.物理知識點總結
10.小學數學遠程研修總結
【備戰小升初小學數學知識點總結】相關文章:
小升初數學:分數知識點07-08
小升初數學:知識點大全07-08
小升初數學知識點07-04
小升初數學幾何知識點06-24
小升初數學復習知識點12-12
小升初數學必看知識點12-01
關于小升初數學數學知識點歸納12-02
小升初數學知識點:角07-15
小升初數學單位換算知識點07-08
小升初數學知識點:圓07-07