復變函數學習心得體會范本
數學學科發展到現在,已成為了分支眾多的學科之一,復變函數則是其中一個非常重要的分支,是19世紀,Cauchy, Riemann, Weierstrass 等數學家分別從不同角度建立了復變函數的系統理論,使復變函數真正成為分析數學的一個重要分支。
復變函數是復數域上的微積分,是基于解決數學內部矛盾的間接需要而產生的,是由于在生產實際和科學研究中發現了應用原型而發展起來的!
復變函數現在是大學理工科專業和數學院系數學類專業的一門重要的基礎課,但是復變函數的學習要有高等數學的基礎,如果沒有這方面的知識,學習復變函數無疑會非常困難,因為這門課程在初學者看來非常抽象,理論性太強。作為復變函數的教學工作者,如何使得這門課程的課堂變得生動有趣,而且使學生在學習過程中容易理解,是我們不得不思考的問題。
由于復變函數的導數與可導性、微分與可微性是利用類比的方法從一元實變函數相應概念推廣到復數域后得到的,它們在形式上與一元實變函數的導數、可導性與微分一致,因此在教學中應當勤于和善于比較,既要重視共性,更要注意不同點,切實關注在推廣到復數域后出現了什么新情況和新問題,探討出現新問題的原因何在。
在這篇報告中,王錦森先生非常生動地介紹了復變函數課程的改革思路和分別討論了復變函數教學中的難點和重點,并且這些難點和重點的教學方法。
難點和重點介紹方面:討論了“在復變函數可導性(從而判斷函數解析性)的充要條件中,為什么要求函數的實部和虛部必須滿足Cauchy-Riemann方程?”內在含義,復變函數的導數的幾何意義是否跟實變函數導數的幾何意義相同?,一元實函數的`微分中值定理能不能推廣到復變函數中來?,復變初等函數與相應的實變初等函數之間的關系與差別,復變函數的積分與一元實變函數的第二型曲線積分的不同之處,即,它們積分和式的結構不同,積分的表達形式不同,物理意義不同等等,還討論了學習Cauchy-Goursat 基本定理應當注意的幾個問題,復變函數積分中有沒有與一元實變函數微積分中的微積分基本定理和Newton-Leibniz公式相對應的結論等等。
這些難點和重點教學法方面介紹了類比教學法,化“復”為“實”,用“已知”解決“未知”的思想等教學法。
參加培訓之前我沒有考慮過這些問題,通過這次學習,我對這些難點與重點的認識進一步深入了。以后的教學過程中用到所學的知識,為提高教學質量而努力。
買買提艾力喀迪爾
(喀什師范學院數學系)
【復變函數學習心得體會范本】相關文章:
Javascript 函數的學習11-16
Javascript入門學習js函數11-15
二次函數學習方法必看12-30
tatic函數與普通函數的區別11-22
javascript函數詳解11-18
編寫JavaScript函數11-14
戰略管理學習心得體會范本08-12
excel函數有哪些種類-函數種類知識08-13
復星集團資本運作08-15