1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 二次函數學習方法必看

        時間:2021-12-30 08:23:38 學習方法 我要投稿

        二次函數學習方法必看

          在平時的學習、工作或生活中,我們每個人都需要不斷地學習,掌握學習方法,可以幫助大家更加高效的學習。你知道都有哪些學方法嗎?下面是小編幫大家整理的二次函數學習方法必看,希望對大家有所幫助。

        二次函數學習方法必看

          中考數學二次函數解題方法

          1、“某圖象上是否存在一點,使之與另外三個點構成平行四邊形”問題:

          這類問題,在題中的四個點中,至少有兩個定點,用動點坐標“一母示”分別設出余下所有動點的坐標(若有兩個動點,顯然每個動點應各選用一個參數字母來“一母示”出動點坐標),任選一個已知點作為對角線的起點,列出所有可能的對角線(顯然最多有3條),此時與之對應的另一條對角線也就確定了,然后運用中點坐標公式,求出每一種情況兩條對角線的中點坐標,由平行四邊形的判定定理可知,兩中點重合,其坐標對應相等,列出兩個方程,求解即可。

          進一步有:

         、偃羰欠翊嬖谶@樣的動點構成矩形呢?先讓動點構成平行四邊形,再驗證兩條對角線相等否?若相等,則所求動點能構成矩形,否則這樣的動點不存在。

         、谌羰欠翊嬖谶@樣的動點構成棱形呢?先讓動點構成平行四邊形,再驗證任意一組鄰邊相等否?若相等,則所求動點能構成棱形,否則這樣的動點不存在。

         、廴羰欠翊嬖谶@樣的動點構成正方形呢?先讓動點構成平行四邊形,再驗證任意一組鄰邊是否相等?和兩條對角線是否相等?若都相等,則所求動點能構成正方形,否則這樣的動點不存在。

          2.“拋物線上是否存在一點,使兩個圖形的面積之間存在和差倍分關系”的問題:(此為“單動問題”〈即定解析式和動圖形相結合的問題〉,后面的19實為本類型的特殊情形。)

          先用動點坐標“一母示”的方法設出直接動點坐標,分別表示(如果圖形是動圖形就只能表示出其面積)或計算(如果圖形是定圖形就計算出它的具體面積),然后由題意建立兩個圖形面積關系的一個方程,解之即可。(注意去掉不合題意的點),如果問題中求的是間接動點坐標,那么在求出直接動點坐標后,再往下繼續求解即可。

          3.“某圖形〈直線或拋物線〉上是否存在一點,使之與另兩定點構成直角三角形”的問題:

          若夾直角的兩邊與y軸都不平行:先設出動點坐標(一母示),視題目分類的情況,分別用斜率公式算出夾直角的兩邊的斜率,再運用兩直線(沒有與y軸平行的直線)垂直的斜率結論(兩直線的斜率相乘等于-1),得到一個方程,解之即可。

          若夾直角的兩邊中有一邊與y軸平行,此時不能使用斜率公式。補救措施是:過余下的那一個點(沒在平行于y軸的那條直線上的點)直接向平行于y的直線作垂線或過直角點作平行于y軸的直線的垂線與另一相關圖象相交,則相關點的坐標可輕松搞定。

          高一數學二次函數知識點歸納

          I.定義與定義表達式

          一般地,自變量x和因變量y之間存在如下關系:

          y=ax^2+bx+c

          (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

          則稱y為x的二次函數。

          二次函數表達式的右邊通常為二次三項式。

          II.二次函數的三種表達式

          一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

          頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

          交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

          注:在3種形式的互相轉化中,有如下關系:

          h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

          III.二次函數的圖像

          在平面直角坐標系中作出二次函數y=x^2的圖像,

          可以看出,二次函數的圖像是一條拋物線。

          IV.拋物線的性質

          1.拋物線是軸對稱圖形。對稱軸為直線

          x=-b/2a。

          對稱軸與拋物線的交點為拋物線的頂點P。

          特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

          2.拋物線有一個頂點P,坐標為

          P(-b/2a,(4ac-b^2)/4a)

          當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

          3.二次項系數a決定拋物線的.開口方向和大小。

          當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

          |a|越大,則拋物線的開口越小。4.一次項系數b和二次項系數a共同決定對稱軸的位置。

          當a與b同號時(即ab>0),對稱軸在y軸左;

          當a與b異號時(即ab<0),對稱軸在y軸右。

          5.常數項c決定拋物線與y軸交點。

          拋物線與y軸交于(0,c)

          6.拋物線與x軸交點個數

          Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

          Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

          Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

          V.二次函數與一元二次方程

          特別地,二次函數(以下稱函數)y=ax^2+bx+c,

          當y=0時,二次函數為關于x的一元二次方程(以下稱方程),

          即ax^2+bx+c=0

          此時,函數圖像與x軸有無交點即方程有無實數根。

          函數與x軸交點的橫坐標即為方程的根。

          1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

          解析式

          頂點坐標

          對稱軸

          y=ax^2

          (0,0)

          x=0

          y=a(x-h)^2

          (h,0)

          x=h

          y=a(x-h)^2+k

          (h,k)

          x=h

          y=ax^2+bx+c

          (-b/2a,[4ac-b^2]/4a)

          x=-b/2a

          當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

          當h<0時,則向左平行移動|h|個單位得到.

          當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

          當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

          當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

          當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

          因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

          2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

          3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

          二次函數性質

          一、定義與定義式:

          自變量x和因變量y有如下關系:

          y=kx+b

          則此時稱y是x的一次函數。

          特別地,當b=0時,y是x的正比例函數。

          即:y=kx(k為常數,k≠0)

          二、一次函數的性質:

          1.y的變化值與對應的x的變化值成正比例,比值為k

          即:y=kx+b(k為任意不為零的實數b取任何實數)

          2.當x=0時,b為函數在y軸上的截距。

          三、一次函數的圖像及性質:

          1.作法與圖形:通過如下3個步驟

          (1)列表;

          (2)描點;

          (3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

          2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。

          3.k,b與函數圖像所在象限:

          當k>0時,直線必通過一、三象限,y隨x的增大而增大;

          當k<0時,直線必通過二、四象限,y隨x的增大而減小。

          當b>0時,直線必通過一、二象限;

          當b=0時,直線通過原點

          當b<0時,直線必通過三、四象限。

          特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

          這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

          四、確定一次函數的表達式:

          已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

          (1)設一次函數的表達式(也叫解析式)為y=kx+b。

          (2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

          (3)解這個二元一次方程,得到k,b的值。

          (4)最后得到一次函數的表達式。

        【二次函數學習方法必看】相關文章:

        中學二次函數教案08-30

        初三數學二次函數知識點08-30

        初中數學二次函數的教學反思(通用5篇)03-25

        2016年高級經濟師關于需求與需求函數的考前必看考點11-09

        tatic函數與普通函數的區別12-20

        女人護發必看08-19

        javascript函數詳解11-18

        編寫JavaScript函數11-14

        excel函數有哪些種類-函數種類知識05-27

        構造函數和析構函數php基礎知識11-15

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>