二次函數學習方法必看
在平時的學習、工作或生活中,我們每個人都需要不斷地學習,掌握學習方法,可以幫助大家更加高效的學習。你知道都有哪些學方法嗎?下面是小編幫大家整理的二次函數學習方法必看,希望對大家有所幫助。
中考數學二次函數解題方法
1、“某圖象上是否存在一點,使之與另外三個點構成平行四邊形”問題:
這類問題,在題中的四個點中,至少有兩個定點,用動點坐標“一母示”分別設出余下所有動點的坐標(若有兩個動點,顯然每個動點應各選用一個參數字母來“一母示”出動點坐標),任選一個已知點作為對角線的起點,列出所有可能的對角線(顯然最多有3條),此時與之對應的另一條對角線也就確定了,然后運用中點坐標公式,求出每一種情況兩條對角線的中點坐標,由平行四邊形的判定定理可知,兩中點重合,其坐標對應相等,列出兩個方程,求解即可。
進一步有:
、偃羰欠翊嬖谶@樣的動點構成矩形呢?先讓動點構成平行四邊形,再驗證兩條對角線相等否?若相等,則所求動點能構成矩形,否則這樣的動點不存在。
、谌羰欠翊嬖谶@樣的動點構成棱形呢?先讓動點構成平行四邊形,再驗證任意一組鄰邊相等否?若相等,則所求動點能構成棱形,否則這樣的動點不存在。
、廴羰欠翊嬖谶@樣的動點構成正方形呢?先讓動點構成平行四邊形,再驗證任意一組鄰邊是否相等?和兩條對角線是否相等?若都相等,則所求動點能構成正方形,否則這樣的動點不存在。
2.“拋物線上是否存在一點,使兩個圖形的面積之間存在和差倍分關系”的問題:(此為“單動問題”〈即定解析式和動圖形相結合的問題〉,后面的19實為本類型的特殊情形。)
先用動點坐標“一母示”的方法設出直接動點坐標,分別表示(如果圖形是動圖形就只能表示出其面積)或計算(如果圖形是定圖形就計算出它的具體面積),然后由題意建立兩個圖形面積關系的一個方程,解之即可。(注意去掉不合題意的點),如果問題中求的是間接動點坐標,那么在求出直接動點坐標后,再往下繼續求解即可。
3.“某圖形〈直線或拋物線〉上是否存在一點,使之與另兩定點構成直角三角形”的問題:
若夾直角的兩邊與y軸都不平行:先設出動點坐標(一母示),視題目分類的情況,分別用斜率公式算出夾直角的兩邊的斜率,再運用兩直線(沒有與y軸平行的直線)垂直的斜率結論(兩直線的斜率相乘等于-1),得到一個方程,解之即可。
若夾直角的兩邊中有一邊與y軸平行,此時不能使用斜率公式。補救措施是:過余下的那一個點(沒在平行于y軸的那條直線上的點)直接向平行于y的直線作垂線或過直角點作平行于y軸的直線的垂線與另一相關圖象相交,則相關點的坐標可輕松搞定。
高一數學二次函數知識點歸納
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:
y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)
則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II.二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,
可以看出,二次函數的圖像是一條拋物線。
IV.拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為
P(-b/2a,(4ac-b^2)/4a)
當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數a決定拋物線的.開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
V.二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2+bx+c,
當y=0時,二次函數為關于x的一元二次方程(以下稱方程),
即ax^2+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。
函數與x軸交點的橫坐標即為方程的根。
1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
頂點坐標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
二次函數性質
一、定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數。
特別地,當b=0時,y是x的正比例函數。
即:y=kx(k為常數,k≠0)
二、一次函數的性質:
1.y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數b取任何實數)
2.當x=0時,b為函數在y軸上的截距。
三、一次函數的圖像及性質:
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)
2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。
3.k,b與函數圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
四、確定一次函數的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。
(1)設一次函數的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數的表達式。
【二次函數學習方法必看】相關文章:
中學二次函數教案08-30
初三數學二次函數知識點08-30
初中數學二次函數的教學反思(通用5篇)03-25
2016年高級經濟師關于需求與需求函數的考前必看考點11-09
tatic函數與普通函數的區別12-20
女人護發必看08-19
javascript函數詳解11-18
編寫JavaScript函數11-14
excel函數有哪些種類-函數種類知識05-27
構造函數和析構函數php基礎知識11-15