1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 總結數學學習方法

        時間:2023-06-26 22:33:20 學習方法 我要投稿

        總結數學學習方法(合集15篇)

          總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它有助于我們尋找工作和事物發展的規律,從而掌握并運用這些規律,因此十分有必須要寫一份總結哦。那么你真的懂得怎么寫總結嗎?以下是小編收集整理的總結數學學習方法,希望對大家有所幫助。

        總結數學學習方法(合集15篇)

        總結數學學習方法1

          1.特值檢驗法

          對于具有一般性的數學問題,我們在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。

          例:△ABC的三個頂點在橢圓4x2+5y2=6上,其中A、B兩點關于原點O對稱,設直線AC的斜率k1,直線BC的斜率k2,則k1k2的值為

          A.-5/4

          B.-4/5

          C.4/5

          D.2√5/5

          解析:因為要求k1k2的值,由題干暗示可知道k1k2的值為定值。題中沒有給定A、B、C三點的具體位置,因為是選擇題,我們沒有必要去求解,通過簡單的畫圖,就可取最容易計算的值,不妨令A、B分別為橢圓的長軸上的兩個頂點,C為橢圓的短軸上的一個頂點,這樣直接確認交點,可將問題簡單化,由此可得,故選B。

          2.極端性原則

          將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,一但采用極端性去分析,那么就能瞬間解決問題。

          3.剔除法

          利用已知條件和選擇支所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的.目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。

          4.數形結合法

          由題目條件,作出符合題意的圖形或圖象,借助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。

          5.遞推歸納法

          通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。

          6.順推破解法

          利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。

          7.逆推驗證法

          將選擇支代入題干進行驗證,從而否定錯誤選擇支而得出正確選擇支的方法。

          8.正難則反法

          從題的正面解決比較難時,可從選擇支出發逐步逆推找出符合條件的結論,或從反面出發得出結論。

          9.特征分析法

          對題設和選擇支的特點進行分析,發現規律,歸納得出正確判斷的方法。例:256-1可能被120和130之間的兩個數所整除,這兩個數是:

          A.123,125

          B.125,127

          C.127,129

          D.125,127

          解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故選C。

          10.估值選擇法

          有些問題,由于題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能借助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。

          高中是人生中的關鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中數學學科十大搶分技巧,希望大家喜歡。

        總結數學學習方法2

          一、基礎必須要扎實。講新課的時候要好好聽課,爭取一次聽懂。數學講究舉一反三。這些基礎題目相當于母題了。試卷時一般有百分之六十至七十的基礎題。

          二、關于選擇題。試卷上一般是以選擇題開頭,做的題多了,一般算一遍就能出答案了,相信第一感覺。前10個一般為基礎題,比較好做,花的時間不會太多。后2個難度系數就大了,可以先放放,有時間再做或者簡單計算,可以四選一嘛。

          三、About大題。這個就是最后沖刺階段了。前幾個,難度適當,題型也比較固定,是按部就班的來,寫一步有一步的分數,就算結果不對,分數也不會低的`。后兩個大題,就屬于高檔題了,可以先做前幾個小題,最后一問就是腦力勞動了,視時間而定。

          四、合理把握時間。平常的學習時間要合理規劃?沙槌鲆恍〔糠謺r間翻翻錯題集,個人感覺蠻有用,溫故而知新。

        總結數學學習方法3

          20xx年北京市文科狀元:易萌

          畢業中學:北京師范大學附屬第二中學

          高考總分:641分

          單科成績:語文112分、數學147分、英語138分、文綜244分

          考入院校:北京大學元培實驗班

          【高考真題總結規律法】面對眾多的習題,自然要有所取舍。我認為做題應立足高考,與其費盡心機搜集各種新題怪題,不如老老實實的將手中的一本《十年高考》做透。

          在高考復習期間,我將近年高考題的分類匯編做了三遍。在第一輪復習時,我和大多數同學一樣,隨著老師的復習進度將分類會編中的大部分題目做一遍(15分鐘內沒有思路的解答題除外)。在這一遍做題時,我通常要利用每天頭腦最清醒的兩個小時(一般是晚上8∶0010∶00)來做規定數目的題,以提高做題的速度與準確率。在對答案之后將錯題與做著不順手、方法很繁瑣的題目標上記號,并在改錯本上改錯。這樣在做其他題集時若遇上相似題目就能以高考真題為母本舉一反三,逐漸形成解題思路。第二遍做題在第二輪復習接近尾聲時,由于在第二輪復習中我已做過一些模擬題和拔高題,解題能力已有一定提高,這一遍主要集中攻克第一遍空著的較難解答題,同時重做一遍做了標記的題目。這一段時間最好將自己浸沒在一個較難題的環境之中,結合《38套模擬題》以及今年的'模擬題做《十年高考》,著重攻克自身弱項(如我的弱項是解析幾何,在此期間便每天用一個多小時專做解析難題)。最后一遍在高考前十五天左右,我一方面將去年各地考題做了一遍,并將標號題中的典型題對照改錯本復習一遍;一方面對照考試說明,熟悉一下本地高考的出題思路。這時要繞開難題、偏題與怪題,側重基礎題的保溫練習。曾有學長教誨:高考題要做五遍以上。這對于信息過剩的我們來說顯然不太現實,但充分利用手中的高考題卻是高考數學復習的第一要務。

        總結數學學習方法4

          有意識培養自己的各方面能力

          數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。

          平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的`全面發展。

          形成良好的學習習慣

          針對學生的學習習慣,我有四個方面的要求:一是在課前要認真預習,努力找出重點和難點,對課本中的練習要嘗試進行解題,遇到自己不了解之處,要重點思考,以確定上課時聽講所要注重的主要問題。二是在課堂的聽課過程中,要把遇到的疑問和重點、解題思路和需要進一步學習的典型例題等內容都完整地記下來,便于在課后進行整理和復習。三是在課后要及時進行復習,根據課堂筆記中的記錄,徹底弄清楚課堂上所學到的知識,解決自己的疑問。

          通過整理課堂筆記,把知識點進一步進行深化、系統化和條理化。對于學有余力的學生,應要求其結合所學內容,閱讀有關的數學課外書籍,以便加深和加寬知識面。四是在課后做數學作業之前,要先復習一遍當日所上的有關內容,等做完作業之后,還要進行總結歸納,找出解決同類問題的更多方法,盡量求得多種解法。

        總結數學學習方法5

          抓住課堂,配合好教師的教學

          應做到課前做好各種準備并利用課前兩分鐘的預習時間想一想前一節課的內容;上課時專心致志,積極思考,盡量使自己的思路與教師的思路過程合拍,做到耳目并用,手腦結合,提高聽課的效率;課后及時復習,使知識再現,形成永久性記憶;最好能將老師所講的內容與課本作一比較,從中獲得更多知識;作業僅限于課堂練習是遠遠不夠的,要利用課外資料拓寬知識領域,補充課內不足,更重要的是促進課內學習。

          善于歸納總結知識間的聯系

          學習數學并非我做題就可以取得好的成績,而是要將精力花在歸納總結上。特別對課本或課堂上出現的例題,只要善于總結,就可以了解這一小節數學內容有哪幾種題型,每種題目的一般解法和思路是什么,從而提高運用所學知識分析解題的能力。同時,每學完一個單元,要建立本單元的知識框架,將本章的主要思路、推理方法及運用技巧等轉變成自己的實際技能。

          學會發現問題,并重視質疑在學習中?吹匠煽兒每赐瑢W,總是有很多問題問老師,而成績差的同學卻提不出什么問題。提出疑問不僅是發現真知的起點,而且是發明創造的開端。提高學習成績的過程就是發現,提出并解決疑問的過程。大膽向老師質疑,不是笨的反映,而是在追求真知、積極進取的`表現。在聽課中,不但要“知其然”,還要“知其所以然”,這樣疑問也就在不斷產生,再加以分析思考使問題得以解決,學習也就得到了長進。

          要重視自學能力的培養

          學生在校學習時有著許多自習的時間,如能堅持自學,學起來就速度快、印象深、質量高。自學并不僅限于課內,還包括閱覽課外書籍,使課內外知識互補。只有具有獨立獲取新知識的能力,才能不斷更新自身的知識體系,跟上時代的節拍。

        總結數學學習方法6

          復習高等數學的四點訣竅

          第一,要理解概念

          數學中有很多概念。概念反映的是事物的本質,弄清楚了它是如何定義的、有什么性質,才能真正地理解一個概念。所有的問題都在理解的基礎上才能做好。

          第二,要掌握定理

          定理是一個正確的命題,分為條件和結論兩部分。對于定理除了要掌握它的條件和結論以外,還要搞清它的適用范圍,做到有的放矢。

          第三,在弄懂例題的基礎上作適量的習題

          要特別提醒學習者的是,課本上的例題都是很典型的,有助于理解概念和掌握定理,要注意不同例題的特點和解法在理解例題的基礎上作適量的習題。作題時要善于總結——不僅總結方法,也要總結錯誤。這樣,作完之后才會有所收獲,才能舉一反三。

          第四,理清脈絡

          要對所學的知識有個整體的把握,及時總結知識體系,這樣不僅可以加深對知識的理解,還會對進一步的學習有所幫助。

          高等數學中包括微積分和立體解析幾何,級數和常微分方程。其中尤以微積分的內容最為系統且在其他課程中有廣泛的應用。微積分的理論,是由牛頓和萊布尼茨完成的。(當然在他們之前就已有微積分的應用,但不夠系統)

          數學備考一定要有一個復習時間表,也就是要有一個周密可行的計劃。按照計劃,循序漸進,切忌搞突擊,臨時抱佛腳。其實數學是基礎性學科,解題能力的提高,是一個長期積累的過程,因而復習時間就應適當提前,循序漸進。大致在三、四月分開始著手進行復習,如果數學基礎差可以將復習的時間適當提前。復習一定要有一個可行的計劃,通過計劃保證復習的進度和效果。一般可以將復習分成四個階段,每個階段的起止時間和所要完成的任務考生應給予明確規定,以保證計劃的可行性。第一個階段是按照考試大綱劃分復習范圍,在熟悉大綱的基礎上對考試必備的基礎知識進行系統的復習,了解考研數學的基本內容、重點、難點和特點。這個時間段一般劃定為六月前。第二個階段是在第一階段的基礎上,做一定數量的題,重點解決解題思路的問題。一般從七月到十月。這個階段要注意歸納總結,即拿到題后要知道從什么角度,可以分幾步去求解,每道題并不要求都要寫出完整步驟,只要思路有了,運算過程會做了,可以視情況而靈活掌握,這樣省出時間來看更多的題。所選試題可以是歷年真題,也可以是書上的練習題,但真題一定要做,而且要嚴格按照實考的要求去做,把握真題的特點和解題思路及運算步驟。第三個階段是實戰訓練階段,從十一月到十二月的中旬,這也是臨考前非常重要的階段。考生要對大綱所要求的知識點做最后的梳理,熟記公式,系統地做幾套模擬試卷,進行實戰訓練,自測復習成果。在做模擬題前先要系統記憶掌握基本公式,做題要講究質量,既要有速度,又要有嚴格的步驟、格式和計算的準確性。最后階段是考前沖刺,從十二月下旬到考試。針對在做模擬試題過程中出現的.問題作最后的補習,查缺補漏,以便以的狀態參加考試。學好數學是一個長期的過程,來不得半點的投機取巧,所以考前突擊,臨時抱佛腳的做法是不足取的,只有按照自己的計劃,踏踏實實的進行準備,才能以不變應萬變,只要自己的綜合能力提高了,不管考試如何變化,都能取得好的成績。

          數學的學習一定要每天都有個進度,每天都要有題量,我們不應該搞題海戰術,但是通過做題提高實戰經驗也是必須的,首先有個大的學習框架,然后計劃到每天,怎么去學習,每天做那方面的題,定期的查漏補缺,這樣的學習才真正的有效果。

          學習高等數學要做的準備

          在高等教育自學考試的很多專業中,很多都有高等數學課程。很多考生反映,高等數學(一)通過非常難,林士中老師所教授的高等數學課程一直受到廣大網校學員的好評。在授課之余,林教授傳授了通過高數的訣竅。他說,在學習高數(一)之前,首先你要打好基礎,把初中的數學補回來,再參加這兩門課程的考試就好的多。

          林士中:我對同學了解的情況,一種是原來中學學的初等知識掌握太少,高等數學沒有用大量的初等數學知識,但是要用一部分的知識。有些同學不是高等數學知識沒掌握好,主要是初等數學知識不夠數量,或者掌握太少,變形變不過來,這樣就算你知道高等數學,但是初等掌握不好,考試肯定會遇到一定困難。如果你是初等數學掌握過少影響考試不及格,你應該把最基本的初等數學知識復習。自考365網校已經推出了高等數學的基礎輔導課程,介紹微積分當中用到的初等數學有哪些,大概有6課時。介紹微積分當中用到的初等數學有哪些,如果有一部分同學感到初等數學知識不夠用,我希望同學不要害怕,你即便初等數學知識不夠好,不見得過不了。希望大家多花點時間學習,可以起到事半功倍的效果。

          第二個,有些同學覺得,學高等數學,或者微積分,主要靠理解,但是實際上這里邊有一些誤會,數學主要是靠理解,但是和其他課程有區別,其他課程靠記憶比較多,當然也要理解,但是數學,靠理解的比較多,不等于不要記憶,特別有些基本的東西必須記的大家還要記憶,比如說一些基本概念,導數的定義,連續性的定義這些基本的東西要適當的記一下。

          第三個,基本公式表,微分公式表也要記,這些基本的東西大家還要記。積分公式表記不住,積分就過不了關,在記憶的基礎上適當做一些題達到融會貫通,我希望大家做好這兩方面的復習。

          有同學初等數學不會的,經過努力,這樣的都能考過,其他人一定能考過。當然得補一些數學,不補是不行的,你們提出來補什么好,我跟大家說,初等數學不像你們中學那樣什么都要考,中學老師教你們主要是競爭,考大學是一種競爭性質,要求的內容相當多,偏題怪題都有,但是作為學高等數學不是競爭性質,只要求掌握基本知識,所以這部分就要把初等數學的基本內容掌握好就行,實際上我個人覺得,你只要有決心補初等數學,有兩三天就夠了。

          如何學好高等數學

          認真聽課。既然是高數課,自然是老師講課,一周的高數課的節數肯定不會少。所以,老師上課就是最好的一個學習媒介。少年們,上課努力早起去做前排吧。如果老師夠認真負責,相信做好了這一步,那就基本上成功了一半.

          買一本靠譜的考研書。如果老師不認真負責,只會用蚊子般大小的聲音念念ppt怎么辦;根本聽不下去怎么辦。這個時候,不用慌張,其實還是有很多很好的選擇,推薦去買一本厚厚的考研書,不用擔心,考研書就是幫你們復習大一的高數知識,而且上面通常整理的非常好。各類例題也都是平時?嫉念愋。

          做好筆記。書上一些沒有的證明和老師上課隨性發揮的精華可是一瞬即逝的噠。做好筆記還有益于自己上課認真專注。如果是自己看書也需要記筆記。

          按時做作業。還記得高中時怎么沒日沒夜的做作業嗎,practice makesperfect,這句話是沒有錯的,高數的作業會有很多,而它對你學好高數的重要性也不言而喻的。而且,作業好還有平時分還高,最后總評也高不是。

          學習公開課。如果對一些證明,推理,或者概念不清楚,想要找個名師的話,網絡上的公開課其實是一個非常好的選擇。這也是現在的教育的一種趨勢,這里推薦一些常用的,比如mooc,愛課程網,網易公開課等等。國外名校的都是大師,聽完他們的講解相信一定會對高數和整個數學體系有一個新的理解,并對它產生興趣。

        總結數學學習方法7

          1.學習要以書本為主

          為什么以書本為主呢?出題目得以什么為主,當然是書本了.我們現在還是應試教育,萬變不離其中,理論的東西都一樣.

          2.理解

          既然學習是以書本為主,那是不是要背書呢?對數學這學科來講當然不是,因為題目千變萬化,但考點不會變,所以要求同學們要理解書上的每個概念,性質,判定,當然公式要記牢.

          做題目最根本的是靠什么,靠得是對概念得理解呀,概念要每個都理解,真不理解得話就背下來. 考試考的是什么,不是題目,是對概念的理解呀.是概念呀!

          3.做課本上得小練習,然后再做習題.

          為什么要做課本上得小練習,因為課本上得小練習,能幫助你理解記住書上得概念,再做習題,習題要比小練習難,但那樣更能讓你強化概念得運用.

          4.做練習冊

          為什么要做練習冊,練習冊得題目相對有點深度.而且會更廣一點,問題是他會有些新得題型你不知道.

          有能力的同學還可以從以下兩方面入手:

          5.做兩本課外資料.

          數學要求準確率,適當得多做點題目可以增加你認識新題型,同時增加你做題目得準確率.但是前提是要完成上面四步!

          6.針對性得對一些題型做訓練

          有些題型比較難,所以要你進行專項得訓練,歸納總結,找出規律,這樣,數學碰到難題你就可以搞定了!

          這是最簡單得學習辦法,我個人建議,如果你一個題目用15分鐘還沒考慮出來,就趕快看答案或者就放棄掉.我們常說"舍得",有"舍"才有"得"!數學第一考得是全面與深度.第二才是難度.如果你全面與深度有了還擔心難度嗎?

          中考考得是所有層面上的人,成績好的和差的都要考.記住百分之九十都是基本題目,難題就是把所有基本題目綜合來考你!

          由于數學基礎參差不齊,所以造成數學學習上的兩極分化.如何消除學習數學的各種障礙,大面積提高數學成績?

          一、掌握預習學習方法,培養數學自學能力

          預習就是在課前學習課本新知識的學習方法,要學好初中數學,首先要學會預習數學新知識,因為預習是聽好課,掌握好課堂知識的先決條件,是數學學習中必不可少的環節.

          數學的預習主要是看數學書,這需要我們既要動腦思考,還要動手練習.數學預習可以有"一劃、二批、三試、四分"的預習方法.

          "一劃"就是圈劃知識要點."二批"就是把預習時的體會、見解以及自己暫時不能理解的內容,批注在書的空白地方."三試"就是嘗試性地做一些簡單的練習,檢驗自己預習的效果."四分"就是把自己預習的這節知識要點列出來,分出哪些是通過預習已掌握了的,哪些知識是自己預習不能理解掌握了的,需要在課堂學習中進一步學習.

          二、掌握課堂學習方法,提高課堂學習效果

          課堂學習是學習過程中最基本,最重要的環節.數學課學習要堅持做到"五到"即耳到、眼到、口到、心到、手到.

          耳到:就是在聽課的過程中,既要聽老師講的知識重點和難點,又要聽同學回答問題的內容,特別要注意聽自己預習未看懂的問題.

          眼到:就是一看老師講課的表情,手勢所表達的意思,看老師的演示實驗、板書內容,二看老師要求看的.課本內容,把書上知識與老師課堂講的知識聯系起來.

          口到:就是自己預習時沒有掌握的,課堂上新生的疑問,都提出來,請教老師或同學.

          心到:就是課堂上要認真思考,注意理解課堂的新知識,課堂上的思考要主動積極.數學課堂學習有時是掌握例題的解法,有時是學會運用公式,關鍵是理解并能融匯貫通,靈活使用.

          對于老師講的新概念,應抓住關鍵字眼,變換角度去理解.如命題"只有零和1的算術平方根是它本身",可以改寫為"如果一個數的算術平方根是它本身,那么這個數是零或1".

          手到:就是在聽,看,思的同時,要適當地動手做一些筆記.

          三、掌握練習方法,提高解答數學題的能力

          數學的解答能力,主要通過實際的練習來提高.數學練習應注意些什么問題呢?

          1.端正態度,充分認識到數學練習的重要性.不論是預習練習,課堂練習,還是課后作業,復習練習,都不能只滿足于找到解題方法,而不動手具體練習一練.實際練習不僅可以提高解答速度,掌握解答技能技巧,而且,許多的新問題常在練習中出現.

          2.要有自信心與意志力.數學練習常有繁雜的計算,深奧的證明,自己應有充足的信心,頑強的意志,耐心細致的習慣.

          3.要養成先思考,后解答,再檢查的良好習慣,遇到一個題,不能盲目地進行練習,無效計算,應先深入領會題意,認真思考,抓住關鍵,再作解答.解答后,還應進行檢查.堅持"先復習,再作業"和"邊作業,邊復習"的練習模式.很多同學反映說為什么上課聽懂了,而到自己做作業的時候,還是不會,這說明沒理解課堂知識.

          4.細觀察、活運用、尋規律、成技巧.

          四、小結方法

          每學完一個章節后,要進行一次小結.盤點一下所學章節內容,將不懂的地方完全弄明白,想清楚,課后的練習題最好要全部能做.

        總結數學學習方法8

          第一,重視聽講。在課堂上,老師講授的一般都是新的知識內容,所以要緊跟著老師的思路走,積極的開展自己的思維,看看老師講的解題思路與自己所想的有什么不同,通過思考進一步的去提高自己的數學能力。

          第二,及時復習。復習的時候要把老師當天講的.內容都消化掉,做到不堆積問題,把老師在課上講的知識點都去回顧一遍,熟練掌握公式的推理過程,盡量通過自己的記憶去回顧,實在搞不懂就去翻下書。

          第三,多做題。學好數學就必須多做題,這是為了掌握各種不同題型的解題思路,剛開始可以不用那么著急,可以從簡單的入手,主要以課本的習題為主,如果課本里的習題能解答好,就是把基礎打扎實。

          基礎知識牢固了,就可以去找一些課外的習題,或者試題來練練手,多幫助自己開拓思維,尋找新思路,提高對解決問題的分析能力,題目做的多了,多多少少就能知道一些解題規律,也就能總結出一套自己的解題方法。

        總結數學學習方法9

          摘要:課本是考試內容的載體,是高考命題的依據,也是智能的生長點,是最有價值的資料,有相當多的高考試題是課本中基本題目的直接引用或稍作變形得來的,其用意就是引導我們要重視基礎,切實抓好“三基”(基礎知識、基本技能、基本方法)。最基礎的知識是最有用的知識,最基本的方法是最有用的方法。

          關鍵詞:知識,技能,方法

          近年來,數學復習資料名目繁多,許多教師過于依賴各類資料,在復習中忽視了書本中的基礎知識。這中做法實際上相當于在復習中失去了基石,現談談本人的一些看法。

          一、重視基礎知識、基本技能、基本方法

          課本是考試內容的載體,是高考命題的依據,也是智能的生長點,是最有價值的資料,有相當多的高考試題是課本中基本題目的直接引用或稍作變形得來的,其用意就是引導我們要重視基礎,切實抓好”三基”(基礎知識、基本技能、基本方法)。最基礎的知識是最有用的知識,最基本的方法是最有用的方法。在復習過程中,我們必須重視課本,夯實基礎,以課本為主,重新全面地梳理知識,方法,注重知識結構的重組與概括,揭示其內在聯系與規律,從中提煉出思想方法。在知識的深化過程中,切忌孤立對待知識,方法,而應自覺地將其前后聯系,縱橫比較、綜合,自覺地將新知識及時納入已有的知識系統中去,注意通用通法,淡化特殊技巧。

          近年來高考數學試題的新穎性,靈活性越來越強,不少學生把主要精力放在難度較大的綜合題上,認為只有通過解決難題才能培養能力,因而忽視了基礎知識、基本技能、基本方法的復習。其實近幾年的高考命題已經明確告訴我們:基礎知識、基本技能、基本方法始終是高考數學考查的重點。選擇題、填空題以及解答題中的基本常規題已達到整份試卷的80%左右,對基礎知識的要求也更高、更嚴了。如果我們在復習中過于粗疏,或在學習中對基礎知識不求甚解,都會導致在考試中判斷錯誤。其實定理、公式推證的過程就蘊涵著重要的解題方法和規律,如果沒有發掘其內在的規律就去做題,試圖通過大量地做題去“悟”出某些道理,只會事倍功半。

          二、抓剛務本,落實教材

          數學復習任務重,時間緊,但決不能因此而脫離教材。相反,要緊扣大綱,抓住教材,在總體上把握教材,明確每一章、每一節的知識在整體中的地位、作用。

          近年來的試題都與教材有著密切的聯系,有的是直接利用教材中的例題、習題、公式定理的證明作為高考題;有的是將教材中的題目略加修改、變形后作為高考題;還有的是將教材中的題目合理拼湊、組合作為高考題。因此,一定要高度重視教材,針對教材所要求的內容和方法,把主要的精力放在教材的落實上,切忌刻意追求偏題、怪題和技巧過強的難題。

          學生對基礎知識和基本技能的理解與掌握是數學教學的基本要求,也是評價學生學習的基本內容。高中數學中的基礎知識、基本技能主要包括②,基本的數學概念、數學結論的本質,概念、結論等產生的背景、應用,以及其中所蘊涵的數學思想和方法,和它們在后續學習中的作用。同時,還包括數學發現和創造的一些基本過程。

          高中數學考試的內容選取,要注重對數學本質的理解和思想方法的把握,避免片面強調機械記憶、模仿以及復雜技巧。尤其要把握如下幾個要點:

          1、關于學生對數學概念、定理、法則的真正理解。尤其是,對數學的理解,至少包括能否獨立舉出一定數量的用于說明問題的正例和反例。

          2、關于不同知識之間的聯系和知識結構體系。即高中數學考試應關注學生能否建立不同知識之間的聯系,把握數學知識的結構、體系。

          3、對數學基本技能的考試,應關注學生能否在理解方法的基礎上,針對問題特點進行合理選擇,進而熟練運用。同時,注意數學語言具有精確、簡約、形式化等特點,適當檢測學生能否恰當地運用數學語言及自然語言進行表達與交流。

          三、加強通性通法的總結和運用

          在復習中應淡化特殊技巧的訓練,重視數學思想和方法的作用。常用的數學思想方法有:

          1、函數思想。中學數學,特別是中學代數,可謂是以函數為中心(綱)。集合的學習,求函數的定義域和值域打下了基礎;映射的引入,使函數的核心----對應法則更顯現其本質;單調性、奇偶性、周期性的研究,是對映射更深入更細致的刻畫;函數與反函數的研究,辨證全面地看待事物之間的制約關系。數列可以看成是特殊的函數。解方程f(x)=0,就是求函數y=f(x)的零點;解不等式f(x)0或f(x)0,就是求函數y=f(x)取正值、負值的區間;函數極限的研究,導數、微分、積分的研究,也完全是以函數為對象,為中心的。一句話,抓住了函數,就牽起中學代數的“牛鼻子”。

          2、數形結合思想。所謂數形結合,就是根據數與形之間的對應關系,通過數與形的相互轉化來解決數學問題的思想,實現數形結合,常與以下內容有關:(1)實數與樹軸上的點的對應關系;(2)函數與圖象的'對應關系;(3)曲線與方程的對應關系;(4)以幾何元素和幾何條件為背景,建立起來的概念,如復數、三角函數等;(5)所給的等式或代數式的結構含有明顯的幾何意義。

          數形結合的重點是“以形助數”。運用數形結合思想,不僅易直觀發現解題途徑,而且能避免復雜的計算與推理。大大簡化了解題過程。這在解選擇題、填空題中更顯其優勢,要注意培養這種思想意識,要爭取做到“胸中有圖,見數想圖”,以開拓自己的思維視野。

          3、分類討論思想。所謂分類討論,就是當問題所給的對象不能統一研究時,就需要對研究對象按某個標準分類,然后對每一類分別研究得出每一類的結論,最后綜合各類結果得到整個問題的答案。實質上,分類討論是“化整為零,各個擊破,再積零為整”的數學策略。

          分類原則:分類的對象確定,標準統一,不重復,不遺漏,分層次,不越級討論。

          分類方法:明確討論對象的全體,確定分類標準,正確進行分類;逐類進行討論,獲取階段性成果;歸納小結,綜合得出結論。

          4、轉化思想。將未知解法或難以解決的問題,通過觀察、分析、類比、聯想等思維過程,選擇運用恰當的數學方法變換,化歸為在已知知識范圍內已經解決或容易解決的問題的思想叫做化歸與轉化的思想;瘹w與轉化的思想的實質是揭示聯系,實現轉化。

          熟練、扎實地掌握基礎知識、基本技能和基本方法是轉化的基礎;豐富的聯想、機敏的觀察、比較、類比是實現轉化的橋梁;培養訓練自己自覺的化歸與轉化意識需要對定理、公式、法則有本質上的深刻理解和對典型習題的總結和提煉,要積極主動有意識地去發現事物之間的本質聯系!白セA,重轉化”是學好中學數學的金鑰匙。

          四、幫助學生打好基礎,發展能力

          教師應幫助學生理解和掌握數學基礎知識、基本技能,發展能力。具體來說:

          1、夯實基礎、加強概念教學:歷年高考都有40%左右分值比重的試題綜合性較弱、難度較低、貼近教材,解答過程較為直觀且命題方式相對穩定,用以考查學生基礎知識的掌握情況。有40%左右分值比重的試題綜合性較強,命題較為靈活,難度相對較高,用以考查學生的基本能力。知識是基礎,能力的提高和知識的豐富是相互伴隨的過程,要意識到基礎知識的重要性,常規教學中一味求難求變的作法是不可取的,抓住基礎知識是全面提高教學質量和高考成績的關鍵。數學科學建立在一系列概念的基礎之上,數學教學由概念開始,概念教學是基礎的基礎。數學具有高度抽象的特點,概念的形成是教學工作的難點。知識的發生發現過程是概念的形成過程,挖掘并精化知識的發生發現過程,直觀展現知識的發生背景和前人的思維過程,是概念教學的關鍵。數學學習要理解諸多的概念及概念間的關系,概念教學貫穿于數學教學工作的始終。探討概念間的關系,展示概念間的聯系,把諸多概念有機地串接起來,有利于加深學生對概念的理解,有利于“辯證、普遍聯系”的認識觀念的形成,有利于探尋、解決問題能力的提高和數學思想方法的形成。

          2、強調對基本概念和基本思想的理解和掌握。教學中應強調對基本概念的理解和掌握,對一些核心概念要貫穿高中數學教學的始終,幫助學生逐步加深理解。由于數學高度抽象的特點,注重體現基本概念的來龍去脈。在教學中要引導學生經歷從具體實例抽象出數學概念的過程,在初步運用中逐步理解概念的本質。

          3、重視基本技能的訓練。熟練掌握一些基本技能,對學好數學是非常重要的。在高中數學課程中,要重視運算、作圖、推理、處理數據以及科學計算器的使用等基本技能訓練。但應注意避免過于繁雜和技巧性過強的訓練。

          隨著時代和數學的發展,高中數學的基礎知識和基本技能也在發生變化。一些新的知識就需要添加進來,原有的一些基礎知識也要用新的理念來組織教學。因此,教師要用新的觀點審視基礎知識和基本技能,并幫助學生理解和掌握數學基本知識、基本技能和基本思想。對一些核心概念和基本思想(如函數、空間觀念、數形結合、向量、導數、統計、隨機觀念、算法等)要在整個高中數學的教學中螺旋上升,讓學生多次接觸,不斷加深認識和理解。在教學中要引導學生經歷從具體實例抽象出數學概念的過程,在初步運用中逐步理解概念的本質,注重體現基本概念的來龍去脈。在新課程中,數學技能的內涵也在發生變化,在教學中要重視運算、作圖、推理、數據處理、科學計算器和計算機的使用等基本技能訓練,但應注意避免過于繁雜和技巧性過強的訓練。

        總結數學學習方法10

          作為教育工作者,對待學生學習上的問題,處理問題的心態與家長有所不同,家長由于親情關系,容易急燥,然而對待學習和成長方面的問題,急燥是不解決問題的,必須要有科學的方式、方法和教育手段,引導學生解決這些學習中的問題。

          數學有一個特點是重要、枯燥。重要是顯而易見的,數學作為基礎學科,高考、中考都考數學;同時它又是枯燥乏味的,這似乎是一對矛盾,要處理這對矛盾,就要解決一個數學學習當中的技巧性問題和心理問題。當然不可能人人都能把數學學好,由于各人的性向不同,有的人傾向于人文學科,有的人傾向于邏輯思維,有的人傾向于空間思維,有的人則傾向于動手能力…..各人的傾向性不一樣,擅長的方面也各不相同,對數學能達到的層次也會參差不齊,但有一點,數學的一些基本要求一定要掌握,例如數學中的一些基本原理、數學方法不能有半點馬虎。因為無論將來我們從事什么行業,數學作為一種基本的處理事物的.方法都非常重要。一般的孩子只要通過正確的方法,正確的引導都能夠達到。

          一、數學中關于概念的問題

          概念的形成需要一個過程。與人生哲理等概念不同,數學概念具有疊加性,也就是說新概念是在舊概念疊加的基礎上來認識的。概念是數學中的一個根本問題,不是靠背,而是在不斷地運用中逐漸形成的,須經過比較、實踐、摸索、總結、歸納等過程,最后建立一個完整的概念。這個過程甚至可以說是痛苦的,漫長的一個階段。

          概念具有長期性。每個概念都有一個失敗—再失敗的過程,伴隨著你對這個概念的錯誤理解,在挫折中不斷加深的。

          概念是隨著一個人知識的增加而不斷深入的。學數學對一個人建立完整的思維方式很重要,隨著對不同數學概念的深入理解,人們處理問題的方式可以越來越趨于嚴謹。

          要建立一個數學的概念網。數學是一個個概念的點陣,所有的相關的、從屬的概念要在頭腦中形成一個網絡。學概念要把不能納入其中的或相關概念認識清楚?偢拍钪懈飨嚓P概念是怎樣發展的要有一個清析的脈絡。

          從不同的層面上來理解一個數學概念。有比較才有認識,對于一個數學概念要擅于從正面、側面、上面、下面等各個層面上來認識它。對于相似的、類似的概念或概念的內部關系認識不清,不利于理解概念,這說明數學末學深入。

          二、運算能力:

          符號化、模式化是數學的一大特點,對這點我們應該有深刻的認識。

          1、模式化。數學的一些定理、原理、公理都有一定的模式,“因為即最簡單的一種模式,對各種數學模式的理解認識也是對人的邏輯思維能力的訓練。

          2、符號化。數學的符號與表達性符號不同,文學藝術中的表達性符號是需要我們仔細體會其中的含義的;而數學中的符號是一種替代性符號,它無需我們想其含義,作用就在于推導,它只是一個替身,幫助我們進行數學思維,所以我們不可以在它的含義上耗費太多的精力。數學就是符號游戲,我們對符號必須精通,才能進行迅速變形。

          中學階段有幾個重要的定理:三垂線定理、正余弦定理、根與系數的關系、二次三項式定理。對這幾個定理的運用必須熟練掌握。

          三、做題技巧:

          從做題方式來分,平時作業可分為硬作業和軟作業兩種:硬作業是指每天需要認認真真做的作業,這類作業要按正規的步驟一絲不茍地做,旨在訓練自己的筆頭功夫和書寫能力;軟作業是指每日需抽出一定的時間來瀏覽若干習題,這類題主要是用來鍛煉自己的思維能力的,具體做法是無需動筆,眼睛看著習題,大腦中迅速掠過這道題的思路、做法,整個過程有點類似空對空。所以在平日做題中兩種方式要搭配使用,認真做的題和瀏覽的題要相濟并用。

          做題要有節奏,難易結合。做題要講質量,不能把精力都放在做偏、難、怪的題型上,因為高考中有難題,平時將重心放在難題上,基礎知識難免會偏失,所以平時適度地做一些中等難度的題即可,關鍵是要學好基礎知識,循序漸進。

          做題要留體會,留下痕跡,學習分為三個過程:模仿、品味、遷移。模仿是初始階段經常作用的一種方式,以老師或教科書為參照,按部就班地做。經過一次次地模仿,我們自己對這些記憶中的題型在大腦中進一步地加工、體會,形成自己對這類題的成型的理解。經過前兩個階段的積累,最后達到將原知識體系與現有知識的相互融合,就實現了對新、舊知識的最新體會。

        總結數學學習方法11

          一、“記錯題法”。學生每人準備一個“記錯本”,把自己平時作業、單元測試或期中、期末考試中出現的錯誤記錄下來,并注明出錯原因,做到有錯必改,以后不再犯類似的錯誤。在實際的學習中,要經常查看這個本子,做到心中有數。

          二、“1×5”學習法。做一道題要有做一道題的.收獲。反對搞題海戰術。

          做一道題,引導學生從五個方面思考:

         、龠@道題考查的知識點是什么。

         、跒槭裁匆@樣做。

         、畚沂侨绾蜗氲降摹

          ④還可以怎樣做,有其它方法嗎?

         、菀活}多變看看它有幾種變化的形式,把自己當作一個出題者,領會出題人的意圖,看看能不能有其他的解題思路怎么樣。

          三、“1×3”糾錯法。

          一道錯題,從三個方面分析:

         、馘e在哪里。

         、阱e的原因是什么。

         、鄯鲜裁礂l件,錯誤才能變成正確。

          四、“1×3”思考法。

          一道對題,從三個方面思考:

         、俳忸}的依據是什么。

         、谟袥]有別的解法,若有多種解法,哪種解法更佳。

         、圻@道題還可以如何變化?

          以上“四法”,既適合于學生的學,又適合于教師、家長的教。

        總結數學學習方法12

          一提起“數學”課,大家都會覺得再熟悉不過了,從小學一直到高中,它幾乎就是一門陪伴著我們成長的學科。然而即使有著大學之前近XX年的數學學習生涯,仍然會有很多同學在初學大學數學時遇到很多困惑與疑問,更可能會有一種摸不著頭腦的感覺。那么,究竟應該如何在大學中學好高數呢?

          在中學的時候,可能許多同學都比較喜歡學習數學,而且數學成績也很優秀,因而這時是處于一種良性循環的狀態,不會有太多的挫敗感,因而也就不會太在意勇于面對的重要性。而剛一進入大學,由于理論體系的截然不同,我們會在學習開始階段遇到不小的麻煩,甚至會有不如意的.結果出現,這時就一定得堅持住,能夠知難而進,繼續跟隨老師學習。

          很多同學在剛入學不久,就是一直感覺很暈。對于上課老師所講的知識,雖然表面上能聽懂,但卻不明白知識背后的真正原因,所以總是感覺學到的東西不實在。至于做題就更差勁了,“吉米多維奇”上的習題根本不敢去看,因為書上的課后習題都沒幾個會做的。這確實與高中的情形相差太大了,香港浸會大學的楊濤教授曾經在一次講座中講過:“在初學高數時感覺暈是很正常的,而且還得再暈幾個月可能就好了!彼躁P鍵是不要放棄,初學者必須要克服這個困難才能學好大學理論知識。除了要堅持外,還要注意不要在某些問題的解決上花費過多的時間。因為大學數學理論十分嚴謹,教科書在講解初步知識時,有時會不可避免地用到一些以后才能學到的理論思想,因而在初步學習時就對著這種問題不放是十分不劃算的。

          所以,在開始學習數學時,可以考慮采取迂回的學習方式。先把那些一時難以想通的問題記下,轉而繼續學習后續知識,然后不時地回頭復習,在復習時由于后面知識的積累就可能會想通以前遺留的問題,進而又能促進后面知識的深刻理解。這種迂回式的學習方法,使得溫故不但能知新,而且還能更好地知故。

        總結數學學習方法13

          問:如何記筆記?

          答: 不是簡單地把老師上課講的內容照抄照搬,更重要的是記錄下自己沒弄懂的問題,書上有的內容標記下頁數,下課后整理?梢园压P記本分成2/3和1/3兩部分,2/3部分用于記錄老師課堂上的內容,書上的定理、證明和公式等;1/3部分留給自己梳理、 體會。整理筆記要去粗取精、有的放矢,溫故知新,一定要加上自己理解之后的內容。

          問:練習題做多少合適?

          答:題量至少超過書上的2倍。

          一本書有選擇性地做,比如期中做1、3、5,期末再做2、4、6。做錯的題要及時揀出來,概念錯誤要更正;即使答案對了,算法不好也要留意,記住更快捷、簡便的做法。

          不要重復做考查相同概念的題,也不要一上來就做難題,打好基礎很重要。萬丈高樓平地起,基礎不牢,地動山搖嗎。

          問:怎樣減少做作業時間?

          答:要集中精力。時間是有限的,做作業的時候不要聽音樂,不要分散精力?梢园炎鲎鳂I當作一次考試,給自己計時間,通過這種訓練養成快速做作業的良好習慣。

          問:上課聽懂了,做題不會做怎么辦?

          答:學生遇到這種情況是沒有真正明白基本概念,應該先回到書上,不要急于馬上做題。如果一道題20分鐘之內都沒有想法,就停下別做,等著和同學交流。交流過程中,不但要明白這道題的解題步驟是什么,更要明白別的`同學是怎樣想到這些步驟的。

          問:怎樣選擇課外練習冊和輔導書?

          答:現在的教輔市場很亂,五花八門,讓人眼花繚亂。

          課外練習冊不要買太厚的,這樣可以讓自己有收獲感。選書時,不要只看作者,最好聽一下老師的建議。同步練習冊中,志宏優化系列編的還是比較認真的。

          問:學習計劃制定得很好,實行起來很難怎么辦?

          答:學生的目標可分為近、中、遠,遠期目標有一個大概就行,近期目標最好具體而不滿。周末上幾個輔導班,看多少書都要有計劃。制定的計劃是要比能承受的最大量少一點,這樣每天都會有成就感。學會三本書平行看,書里面重復的地方就是重點、難點。

          問:做作業正確率很高,但考試成績不行是什么原因?

          答:這種情況大多是由于學生的心理問題,適應環境的能力比較差,一考試就高度緊張。家長平時不要過分關注孩子的考試成績,以免給他太多壓力,還要經常與孩子的任課老師交流,隨時了解孩子的心理狀況。

        總結數學學習方法14


          數學是高考科目之一,故從初一開始就要認真地學習數學。進入高中以后,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由于同學們不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點和高中教學經驗,談一談高中數學學習方法,供同學參考。

          一:先注意以下三點。

          一)、課內重視聽講,課后及時復習。

          新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。

          二)、適當多做題,養成良好的解題習慣。

          要想學好數學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。

          三)、調整心態,正確對待考試。

          首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

          在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。

          由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。

          二:初中數學與高中數學的比較。

          一)、初中數學與高中數學的差異。

          1、知識差異。

          初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是“00—1800”范圍內的,但實際當中也有7200和“--3000”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習“排列組合”知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2= -1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以后的學習中將逐漸學習到。

          2、學習方法的差異。

          (1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課后老師布置作業,然后通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(如:高一有八門課同時學習),每天至少上八節課,自習時間四節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,高中數學教師將不能向初中那樣監督每個學生的作業和課外練習,就不能向初中那樣把知識讓每個學生掌握后再進行新課。

          (2)模仿與創新的區別。

          初中學生模仿做題,他們模仿老師思維推理較多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即使就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度,F在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。

          3、學生自學能力的差異

          初中學生自學能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的.發展。

          其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其后半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。

          4、思維習慣上的差異

          初中學生由于學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那么就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。

          5、定量與變量的差異

          初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們采用對方程ax2+bx+c=0(a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數學思想。

          二)高中數學與初中數學特點的變化。

          1、數學語言在抽象程度上突變

          初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。

          2、思維方法向理性層次躍遷

          高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什么,再看什么等。因此,初中學習中習慣于這種機械的,便于操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。

          3、知識內容的整體數量劇增

          高中數學與初中數學又一個明顯的不同是知識內容的“量”上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。

          4、知識的獨立性大

          初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便于記憶,又適合于知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。

          三、如何學好高中數學。

          一)、培養良好的學習興趣。

          兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?

          1、課前預習,對所學知識產生疑問,產生好奇心。

          2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。

          3、思考問題注意歸納,挖掘你學習的潛力。

          4、聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?

          5、把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、直角坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能對概念的理解切實可靠,在應用概念判斷、推理時會準確。

          二)、建立良好的學習數學習慣。

          習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數學習慣還包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。

          三)、有意識培養自己的各方面能力。

          數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。

          四)、及時了解、掌握常用的數學思想和方法。

          學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

          解數學題時,也要注意解題思維策略問題,經常要思考:選擇什么角度來進入,應遵循什么原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。

          五)、逐步形成 “以我為主”的學習模式。

          數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇于探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善于開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足于現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鉆進去,又要能跳出來,結合自身特點,尋找最佳學習方法。

          六)、針對自己的學習情況,采取一些具體的措施。

          記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中擴展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

          建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

          熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。

          經常對知識結構進行梳理,形成板塊結構,實行“整體集裝”,如表格化,使知識結構一目了然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納于同一知識方法。

          閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。

          及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏固,消滅前學后忘。學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網絡化。

          經常在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。

          無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學好數學的重要問題。

          七)、認真聽好每一節棵。

          在新學期要上好每一節課,數學課有知識的發生和形成的概念課,有解題思路探索和規律總結的習題課,有數學思想方法提煉和聯系實際的復習課。要上好這些課來學會數學知識,掌握學習數學的方法。

          概念課

          要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。

          習題課

          要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會“小題大做”和“大題小做”的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進”,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然后再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什么題目難得倒我們。

          復習課

          在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的措施。在新學期大家準備一本數學學習“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經常拿出來看看、想想錯在哪里,為什么會錯,怎么改正,通過你的努力,到高考時你的數學就沒有什么“病例”了。并且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以“練”代“復”的題海戰術。

          四、其它注意事項

          1.注意化歸轉化思想學習。

          人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握后再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。

          2.學會數學教材的數學思想方法。

          數學教材是采用蘊含披露的方式將數學思想溶于數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。

          課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是_____(符號相反的數)。.②從數軸角度理解:什么樣的兩點表示數是互為相反數的。(關于原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的(相等)。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。

          五、學好數學的幾個建議。

          1.記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。如:我在講課時的注解。

          2.建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

          3.記憶數學規律和數學小結論。

          4.與同學建立好關系,爭做“小老師”,形成數學學習“互助組”。

          5.爭做數學課外題,加大自學力度。

          6.反復鞏固,消滅前學后忘。

          7.學會總結歸類。①從數學思想分類②從解題方法歸類③從知識應用上分類。

          總之,對高一新生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。

          其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會采用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會“提出問題—實驗探究—開展討論—形成新知—應用反思”的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。

          最后,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恒心,更要有一顆平常心。

        總結數學學習方法15

          理解老師講解的內容

          學生對教師所講的內容的理解,還沒能達到教師所要求的'層次。因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的區別。尤其練習題不太配套時,作業中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

          學會做題

          要把課本,筆記,區單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養成一個習慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時的閱讀重點。長期保持這個習慣,學生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進行復習的材料。這樣積累起來的資料才有活力,才能用的上。

          整理資料

          要注意積累復習資料。把課堂筆記,練習,區單元測驗,各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內容。這樣,復習資料才能越讀越精,一目了然。

        【總結數學學習方法】相關文章:

        數學學習方法總結02-16

        數學學習方法的總結11-14

        總結數學學習方法12-20

        總結數學學習方法05-17

        數學學習方法總結07-07

        數學學習方法總結11-22

        初中數學的學習方法總結01-11

        總結數學學習方法05-17

        關于數學的學習方法總結12-07

        小學數學學習方法總結01-02

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>