數學學習方法15篇
在學習、工作乃至生活中,每個階段都有需要學習的內容,掌握學習方法,可以幫助大家更加高效的學習。那么,大家知道要怎樣正確高效的學習嗎?以下是小編為大家收集的數學學習方法,供大家參考借鑒,希望可以幫助到有需要的朋友。
數學學習方法1
我們青少年是祖國的未來,擔負著歷史賦予的神圣使命。我們要努力學習科學文化知識,打下扎實的基礎。所以在求學時期養成科學的學習方法是非常重要的。數學是一門高深而微妙無窮的學科,良好的學習方法對學好數學有很大的協助。
1.考慮:考慮是數學學習方法的核心。在學這門課中,考慮有重大意義。解數學題時,首先要觀察、分析、考慮?紤]往往能發現題目的特點,找出解題的突破口、簡便的解題方法。在我們周圍,凡是真正學得好的同學,都有勤于考慮,經常開動腦筋的習慣,于是腦子就越用越靈,勤于考慮變成了善于考慮。我正因為掌握應用了這一方法,所以在全國數學競賽中獲得了武漢市一等獎。
2.動手試一試:動手有助于消化學習過的知識,做到融會貫通。課下,我經常把老師講過的公式進行推導,推導時不要看書,要默記。這樣就能使自身對公式掌握滾瓜爛熟,可為公式變形計算打下扎實的基礎。
3.培養發明精神:所謂發明,就是想出新方法,做出新成果,建立新理論。發明,就要不局限于老師、課本講的方法。平時,有一些難度高的題目,我在聽懂了老師講的方法后,還要自身去找一找有沒有另外的解法,這樣能加深對題目的理解,能比較幾種解法的利弊,使解題思維達到一個更高的境界。
科學的學習方法在課內課外應注意些什么呢?
第一,認真聽老師講課。
這是我取得好成果的主要原因。聽講時要做到全神貫注,聚精會神,跟著老師的思路走,不能開小差,更切忌一邊講話一邊聽講。其次要專心凝聽老師講的每一個字,因為數學是以嚴謹著稱的,一字之差就非同小可,一字之間就隱藏玄機無限。聽講時還要注意記筆記。一次老師講了一個高難度的幾何題,我一時沒有聽懂,多虧我記下了這道題以和解法,回家后仔細琢磨,終于理解透了,以至在一次競賽中我輕而易舉地解出了類似的一道題,獲得了珍貴的10分。上課還要積極舉手發言,舉手發言的好處可真不少、倏梢造柟坍斕脤W到的知識。②鍛煉了自身的口才。③那些模糊不清的觀念和錯誤能得到老師的指教。真是一舉三得?傊犞v要做到手到、口到、眼到、耳到、心到。
第二,課外練習。
孔子曰:“學而時習之”。課后作業也是學習和鞏固數學的重要環節。我很注意解題的精度和速度。精度就是準確度,專心致志地獨立完成作業,力求一次性準確,而一旦有了錯,要和時改正。而速度是為了鍛煉自身注意力集中,有緊迫感。我經常是這樣做的,在開始做作業時定好鬧鐘,放在自身看不見的地方再做作業,這樣有助于提高作業速度。考試時,就不會緊張,也不會顧此失彼了。
第三,復習、預習。
對數學的復習,預習我定在每天晚上,在完成當天作業后,我將第二天要學的新知識簡要地看一看,再回憶一下老師已講過的內容。睡覺時躺在床上,腦海里再像看電影一樣將老師上課的過程“看”一遍,假如有什么疑難,我立即爬起來看書,直到搞懂為止。每個星期天我還作一星期功課的小結復習、預習。這樣對學數學有好處,并掌握得牢固,就不會忘記了。
第四,提高。
在完成作業和預習、復習之后,我就做一些爬坡題。做這類題,盡可能自身獨立考慮,努力找出隱藏的條件,這是解題的關鍵。假如實在想不出來就需要看一看參考書,以和請教師長和同學。總之,要做到多看、多做、多問、虛心、勤奮,堅持積極向上的精神這才是關鍵的關鍵。
科學的學習方法不只這幾種,各人都有自身的絕招,只要大家互相交流經驗,取長補短,成果一定會提高的。我們青年少擔負著祖國的重任,人民的希望。同學們,讓我們掌握好科學的學習方法,乘著快艇在知識的海洋中披荊斬棘吧!
數學學習方法2
數學學習方法指導:良好習慣、終身受益 小學階段是兒童正式接受學習的最初階段,是良好學習習慣形成的關鍵時期,培養良好的學習習慣是形成學生學習能力的重要方面,也是發展個性的重要方面,因此掌握良好的學習方法是獲得成功的關鍵。 以下十條習慣是每一個合格的學生應該養成的。
一、自覺預習習慣
1、了解所要學習的新知識;2、準備好上課所需的書、本、文具及資料;3、運用工具書幫助預習;4、把遇到的不懂之處和難點標記下來。
二、仔細觀察習慣
1、有意識地運用視、聽、味、嗅、觸等感覺器官來觀察事物;2、觀察全面、清楚、找出特點及特征。
三、認真聽講習慣
1、集中注意力、專心聽講;2、聽清楚所講內容;3、邊聽邊想、理解內容;4、能記下有關要點。
四、樂于交流習慣
1、敢于發表自己的見解;2、耐心地聽完別人的話再發言;3、說話清楚、完整、簡潔明了;4、吸引他人發言的長處,補充和糾正自己的觀點。
五、勤于閱讀習慣
1、集中注意力認真閱讀;2、邊讀邊思考,理解閱讀內容;3、反復閱讀,并使用圈劃等方法理解題意,正確解題。
六、獨立作業習慣
1、先復習后作業;2、做作業時一心一意,不兼做其它的事情;3、獨立作業不抄襲;4、作業字跡工整、格式規范;5、做完作業及時檢查、發現錯誤及時糾正。
七、樂于動手習慣
1、經常使用學具幫助學習;2、通過作圖、演示等來幫助自己學習;3、敢于動手進行小發明、小創造的嘗試。
八、及時筆記習慣
1、聽課時把聽到的內容及時記下來;2、經常歸納、比較運算方法。
九、及時積累習慣
1、意識的積累;2、對獲取的信息進行分類和整理。
十、善用時間習慣
1、有制定作息時間的習慣;2、遵守作息時間表 附部分兒歌 樂于交流 好朋友,拉拉手 課內課外愛交流。 別人發言耐心聽, 取長補短排憂愁。 說話簡明有完整, 大家聽了點點頭。 勤于閱讀 讀書好,勤讀書, 書是知識大寶庫。 抓緊時間多讀書, 圈圈劃劃又摘錄。 邊讀邊想下功夫, 見多識廣勁更足。 獨立作業 窗外小鳥嘰嘰喳, 獨立作業不理它。 遇到難題比抄襲 動手動腦收獲大, 字跡工整講格式, 完成作業再檢查。 及時積累 讀書讀報做卡片, 分類編號貼標簽。 定期收藏舊報刊, 養成看報好習慣。 積累知識堅持做, 小溪也能匯成川。
數學學習方法3
數學選擇題記住這八句話
錯誤類型一:讀題失誤
口訣一:勤分已知待求,明辨信息去留
理解題意是當前高考對同學們最為基本的要求。那么,怎樣的狀態算是對題意完全理解了呢?對于數學而言,只要你在開始解題之前就通過讀題準確區分出了已知條件和待求的結論,那么你距離完全理解題意就非常近了:接下來,你只需要弄清楚已知條件和待求結果之間的關系,并成功運用自己學到的知識將這種關系用公式表達出來,進行計算就可以獲得正確答案了。
但是,近幾年來高考數學中實際應用的問題和具有物理背景、傳統文化背景的問題越來越多,因此每次考試中都有至少一到兩題的題面非常的長,例如20xx年數學全國卷的“寶塔燈籠與等比數列”那一題。
這類題目與傳統的選擇題相比實際只多了一個難度層次:要求考生自行從文本中提取已知條件和待求的結論。事實上,這也是目前高考數理類科目對咱們同學的新要求:理論與實踐結合。
因此,對于這類信息量比較大的題目,我們往往可以將其簡化為一個更加抽象而簡單的數學問題,求解之后即可獲得答案。只要明確了已知和待求的問題,做選擇題基本不會跑偏。
口訣二:理清邏輯線,答案自然現
在明確了一道選擇題里面的已知條件、待求結果之后,接下來的工作就是理清它們的邏輯關系。
一般而言,已知和待求之間的邏輯線是由我們平時課上學到的知識點組成的,每一個知識點之間在邏輯上本身就存在相互導出的關系,因此邏輯線的整理實質上就是通過所學的知識建立起已知和待求之間的邏輯關系,為后面使用公式、確定求解預備條件打下基礎。
此外,整理邏輯線的過程中,也能通過知識點的回顧,在不求解題目的情況下預判題目是否可解,或者說題目若能求解,究竟需要哪些條件。這樣,一個比較復雜的數學問題就有較大的可能轉換成一個比較簡單的數學問題,或者從一個為止的特殊問題轉化為一個已知的一般問題。做到這一步以后,基本上就能制定有效的求解方案,給出計算公式并得到答案了。
錯誤類型二:解題方案錯誤
口訣三:一步一個腳印,一題一組公式
相信各位同學的數學老師應該在課上多次強調過一個問題:做題不能全靠感覺。事實上,解題過程中最容易被感覺迷惑的階段就是解題方案的制定階段。
需要提醒大家的是,數學考試和歷史上的數學研究是有很大差異的。如果大家看過一些數學史相關的書籍的話應該會發現,近200年來的高等數學的證明過程多半都是依靠數學家的大膽假設而得出的“歪打正著”的結論,但是高考數學則不是這樣的。
題目的一切信息,都會指向求解過程中的明確的知識點和公式。你需要做的,就是從題目的情報中找到這些知識點和公式,并按照邏輯與因果關系將其傳承一條線,這就是我們說的解題方案。
口訣四:考題答案千千萬,基本問題占大半
如果大家已經掌握了解題方案的制定手法,那么大家應該很快就會發現這樣一個事實:數學考題往往可以按照其中的核心公式的差異被分為不同的類別,而不同類別的題目中,所有的待求問題最終都會指向某幾個特定的公式內的字母。于是,某個數學考題的解決方案,最終都可以等效為求解某個公式中的待定參數,而這個求解的過程,就是我們數學課上常說的“基本問題”
常見的數學基本問題大致如下:
求解某個函數的定義域、值域
分析某個函數的變化趨勢
討論某個參數在當前條件限制下的取值范圍
使用代數關系式表示一種特定的關系
求解某個整理后的代數式的值
錯誤類型三:計算錯誤
口訣五:考題算式,占紙千面;基本公式,只占一面
當你到了高三總復習的時候,整理數學的知識點應該是理科科目中較為輕松的一類工作,因為數學課上的公式相對于物理、化學、生物而言并不算多。曾經有學霸嘗試過將所有高中必考的數學公式整理在一面A4紙上,這也說明數學的剛性知識體量相對而言是較少的。
但是,為什么大家在使用這些公式的時候仍然會有這么高的錯誤率呢?原因在于,代數思想不成熟,以及訓練過程中對“代換”這一方法的練習還不夠。
以選擇題中的快速多項式求導運算為例。目前求導的選擇題中必然包含符合求導,而這部分求導計算必須將某個代數式視作一個整體,再應用導數公式進行拆分化簡。如果在計算過程中沒能準確識別這個“整體”,或者說在計算過程中將“整體”弄錯了,那么最后的結果必然會出錯。
需要提醒大家的是,高中數學與初中數學在解題方面最大的差異在于代數計算的比例。目前絕大部分地區的高考都禁止使用計算器,因此代數運算能力的培養非常重要
口訣六:字母前后,查缺補漏;正負易反,系數易丟
選擇題里面能夠遭遇大規模代數運算的題型一般是數列、函數性質綜合分析、圓錐曲線性質分析。這部分題目的公式一般采用分式給出,在化簡計算時常常是多組多項式以分式的形式結合起來。這一過程中的錯誤往往會發生在合并同類項和謄抄上一步的結果中,如果出現筆誤,改變了單項式的字母構成(例如多了個字母或者缺一個字母)和正負號,則后續的合并同類項必然受到影響。盡管有過在公式計算出錯的情況下得到正確答案的先例,但是這只是極個別的情形,運氣因素極大。
因此,在代數運算過程中,務必關心每一個單項式在各個計算步驟前后是否一致,字母構成不能變,正負號不能反過來,前面的系數也不能丟!
錯誤類型四:檢查過程中出錯
口訣七:答案不可瞎選,草稿不能瞎打
對于考前準備得比較充分的同學而言,試題完成后的檢查工作更多的是對自己的解題方案以及計算過程的確認。但是選擇題與大題不同,我們的過程一般是呈現在草稿紙上的,如果平時練習的過程中沒有養成良好的打草稿的習慣的話,檢查的過程將非常困難。
草稿雖然不要求字跡工整,但是必須按照題目進行分區,盡量避免將很多道題的草稿打到一塊,否則在后期檢查的時候草稿基本上就失去了利用的價值。
但是,是不是所有的題目都必須規規矩矩地打草稿呢?顯然時間上不允許。在時間比較緊張的情況下,在題目附近標注比較重要的求解思路、公式也是使得草稿更加有有利于后期檢查的方式,而且這么做效率會更高。
口訣八:一路通不算通,路路通才是通
在時間尚有余地的情況下,可以多準備一種求解的思路,在檢查的時候進行快速驗算,如果兩種結果能夠相互印證,則最終的結果多半就是正確答案。
不過這么做必須承擔一定的風險:如果準備了很多種驗算方法,但是考場上卻得到了多個不同的結果,那么哪個才是對的呢?
我們給出的判斷標準是:相信你所認為的方法更簡便、更熟悉、更有把握算對的那個結果。
如果你在正式考試之前已經做過很多類似的練習,也就是嘗試著用很多種方法去解同一個選擇題,那么你在實際考試時利用多種方法驗算題目正確的可能性將隨之增加。反之,如果盲目在考試中引入一種看似可以算對的做法去檢查最后的結果,最后你很可能會將正確答案改成錯誤答案!
數學學習方法4
一、學會主動預習
新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。因此,培養自學能力,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。
如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。
有些家長頭疼孩子上課效率很差;這其中很關鍵的原因是沒有做好預習;自然也就做不到有的放矢;
二、聽課不要僅僅是聽,重要的是要思考
一些學生對公式、性質、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應用所學的知識去解答問題。如有這樣一道題讓學生解“把一個長方體的高去掉2厘米后成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?”
同學們對求體積的公式雖記得很熟,但由于該題涉及知識面廣,許多同學理不出解題思路,這需要學生在老師的引導下逐漸掌握解題時的思考方法。這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;
從圖形變化關系講:長方形→正方形;從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積;
經老師啟發,學生分析后,學生根據其思路(可畫出圖形)進行解答。有的學生很快解答出來:設原長方體的底面長為X,則2X×4=48得:X=6(即正方體的棱長),這樣得出正方體的體積為:6×6×6=216(立方厘米)。
所以說,在課堂上,老師最大的作用是:啟發;孩子在課堂上要緊跟老師的思路,靠著老師的引導,去思考解題的思路;答案真的不重要;重要的是方法!
三、及時總結解題規律
解答數學問題總的講是有規律可循的。在解題時,要注意總結解題規律,在解決每一道練習題后,要注意回顧以下問題:
(1)本題最重要的特點是什么?
(2)解本題用了哪些基本知識與基本圖形?
(3)本題你是怎樣觀察、聯想、變換來實現轉化的?
(4)解本題用了哪些數學思想、方法?
(5)解本題最關鍵的一步在那里?
(6)你做過與本題類似的題目嗎?在解法、思路上有什么異同?
(7)本題你能發現幾種解法?其中哪一種最優?那種解法是特殊技巧?你能總結在什么情況下采用嗎?
把這一連串的問題貫穿于解題各環節中,逐步完善,持之以恒,孩子解題的心理穩定性和應變能力就可以不斷提高,思維能力就會得到鍛煉和發展
四、拓寬解題思路
在教學中老師會經常給學生設置疑點,提出問題,啟發學生多思多想,這時學生要積極思考,拓寬思路,以使思維的廣闊性得到較好的發展。
如:修一條長2400米的水渠,5天修了它的20%,照這樣計算剩下的還需幾天修完?根據工作總量、工作效率、工作時間三者的關系,學生可以列出下列算式:(1)2400÷(2400×20%÷5)-5=20(天)(2)2400×(1-20%)÷(2400×20%÷)=20(天)。
教師啟發學生,提問:“修完它的20%用5天,還剩下(1—20%要用多少天修完呢?”學生很快想到倍比的方法列出:(3)5×(1-20%)÷20%=20(天)。
如果從“已知一個數的幾分之幾是多少,求這個數”的方法去思考,又可得出下列解法:5÷20%-5=20(天)。再啟發學生,能否用比例知識解答?
學生又會想出:(6)20%∶(1-20%)=5∶X(設剩下的用X天修完)。這樣啟發學生多思,溝通了知識間的縱橫關系,變換解題方法,拓寬學生的解題思路,培養學生思維的靈活性。
五、充分發揮錯題本的作用
學生每人準備一個“記錯本”,把自己平時作業、單元測試或期中、期末考試中出現的錯誤記錄下來,并注明出錯原因,做到有錯必改,以后不再犯類似的錯誤。在實際的`學習中,要經常查看這個本子,做到心中有數。
有很多學霸都是因為積極使用了錯題本,而考取了高分;
六、“1×5”學習法
做一道題要有做一道題的收獲。反對搞題海戰術。
做一道題,引導學生從五個方面思考:
①這道題考查的知識點是什么。
②為什么要這樣做。
③我是如何想到的。
④還可以怎樣做,有其它方法嗎?
、菀活}多變看看它有幾種變化的形式,把自己當作一個出題者,領會出題人的意圖,看看能不能有其他的解題思路怎么樣。
七、關于寫作業
在作業過程中存在求速的心理狀態,審題時走馬觀花,粗心大意,對于做錯的題目上,引導學生形成錯題分析法,而分析的目的在于讓學生充分認識到由于不正確的閱讀導致的解題錯誤,從而形成“我要正確閱讀”的內部動機,引導學生仔細審題,真正弄懂題意。
數學學習方法5
數學知識的學習是一個長期積累的過程,它具有基礎性和長期性的特點,我們要遵循由淺入深的原則,先將書本上的知識基礎打牢靠,一定要重視基礎知識的學習,不要過于去追求技巧以及方法。近幾年考研真題對基礎知識的考察時很頻繁的,像剛剛過去的20xx年考研數學中就有關于用導數定義來推導兩個函數乘積的導數。所以,等我們把基礎知識掌握牢靠后,再去學一些技巧以及方法。因此我們將基礎知識的復習安排在第一階段,希望大家給予足夠重視。一個科學的學習計劃,能更迅速有效地幫我們掌握數學知識。
第一,我們強調學習而不是復習。對于大部分同學而言,由于高等數學學習的時間比較早,而且在大學課堂上學習所針對的難度并不是很大,再加上一些知識的遺忘,現在數學知識恐怕已經所剩無幾了,所以,這一遍強調學習,要拿出重新學習的勁頭親自動手去做,去思考。
第二,對于復習順序的選擇問題。我們建議先學高等數學再學線性代數,然后再學概率論與數理統計。我們知道高等數學是線性代數和概率論與數理統計的基礎,一定要先學習。我們并不主張三門課一起學習,畢竟三門課是有所區別的。我們一定要學一門就先學精了再繼續學其他的,倘若你不學透就開始學其他的,每一門都有好多不懂的地方,到時你反而會耗費更多的時間去補前面的知識。當然,你確實也可根據自己的特殊情況調整復習順序。
第三,注重基本概念、定理和方法的掌握。同學們一定要結合考研輔導書和大綱,先吃透基本概念、基本方法和基本定理,只有對基本概念深入理解,對基本定理和公式牢牢記住,才能找到解題的突破口和切入點。一些學生失分的一個重要原因就是對基本概念、基本定理理解不準確,基本解題方法沒有掌握。因此,第一階段學習必須要在數學基本概念、基本定理、重要的數學原理、重要的數學結論等方面加強學習。
第四,加強練習,多多總結、歸納解題思路以及方法和技巧。數學考試主要就是解題,而考研數學中的基本概念、公式、結論等也只有在反復練習中才能真正理解和鞏固。我們通過大量的訓練可以切實提高數學的解題能力,做到面對任何試題都能有條不紊地分析和計算。
第五,正確理解答案的作用。我們在學習的過程中一定要力求理解和掌握所有要考的知識點,做題的過程中一定不要先看答案,如果題目實在做不出來了,再看答案,看明白之后自己一定要把題目重新獨立地做一遍。不要以為看明白了就會了,只有自己真正做一遍,印象才能深刻,才不會忘的過快,否則是無用的。
第六,每一題親力親為,并整理出筆記。
注意一定要在學習過程中寫出自己的感受,可以在書上以題注的形式或者就是做筆記,盡量深挖例題內涵,這一點很重要,并且要貫徹前三輪的復習,如果最后一輪復習我們有了自己整理的筆記,就會很輕松。有同學說學習線性代數最好的辦法就是親自推導,這話很有道理,事實上如果我們學習什么知識都采取這種態度的話,那肯定都會學得非常好。
在考研的路上,你肯定會遇到很多困難,我們知道身體是革命的本錢,健康的身體對于我們是很重要的,所以平時多注意飲食和作息時間,而明確的學習方法和對考研的那份堅持,是你成為贏家的第二本錢。
數學學習方法6
特殊值法
有些選擇題,用常規方法直接求解比較困難,若根據答案中所提供的信息,選擇某些特殊情況進行分析,或選擇某些特殊值進行計算,或將字母參數換成具體數值代入,把一般形式變為特殊形式,再進行判斷往往十分簡單。
以上對數學中特殊值法知識的內容講解學習,相信同學們已經能很好的掌握了吧,希望同學們會在考試中取得優異成績。
初中數學復習方法大全,總復習技巧分享
復習是對所學知識的一種回顧、鞏固的過程,如果復習的方法不對,不但不利于鞏固已學的知識點,還容易將已學的知識點打亂,造成記憶的錯亂。下面給大家分享一份專家的復習心得,從教師的角度來教導大家應該如何復習知識。感興趣的朋友可以參看一下。
數學總復習是初中數學教學的重要組成部分,復習不只是簡單重復,加強記憶,重要的是深化認識,從本質上發現數學知識間的聯系,提高學生的數學素養,數學的應用能力,它是鞏固知識,消化知識,運用知識,培養能力的重要手段。因此,在組織學生進行全面,系統的復習中,本人認為:首先要認真研讀《考試綱要》的說明,明確復習內容與重點,結合學生的實際情況,制定切實的復習計劃,不斷改進復習方法,把夯實基礎,注重過程作為復習的“突破口”;優化結構,培養能力作為復習的“目標點”,通過螺旋式的推進,綜合提高學生的數學素質。
一、 夯實基礎,透視考點,重構知識
通過兩年多的學習,學生能夠已經掌握了一定的基礎知識,基本方法和基本技能,但對教材的理解是零碎的,解題規律的探究是膚淺的,因此,在組織學生進行復習時,我采用兩步走的辦法,首先引導學生系統梳理教材,構 建知識結構,讓各種概念,公理,定理,公式,常用結論及解題方法技巧,都能在學生頭腦中在現。其次深入 挖掘教材的例題,并以其為主要素材,編擬成突破一個重點,攻克一個難點。掌握一種方法,培養一種能力這樣一種訓練思維的模式來深化學生的思維,要求他們著眼于教材,扎扎實實地從實際水平開始,一步一個腳印,夯實基礎,充分體會基礎知識在解題中的指導作用,切實掌握數學思想方法,才能得到有效的提高。最后,進行一些數學專題來進一步強化基礎,拓展學生的數學創造性能力。特別是最后一階段復習中,教師要以思維突破為主線,適時點撥,啟發學生思考,并重視數學題的縝密性與分析法思維策略。
二、 方法引導,共同參與,培養能力
1. 探求方法,揭示規律.在復習教學中,特別是在專題復習教學中,教師教學的主要任務是方法指導與規律揭示。一是解題的通用方法,如關于讓三角形全等或相似常用的添輔助線(截取相等線段,作平行線,做垂線等)的方法。轉移比證明等積等比式的方法等;二是重視初中數學蘊涵的數學思想方法,如:代數中的配方,換元,化歸,數形結合,待定系數等的方法;三是把握中考熱點題行的所用方法,如分類討論的方法。(實際問題數學建模的方法,開放性問題解題方法;四,是揭示典型題的一般方法及規律,如應用題的圖表分析法,幾何證明的常用分析思路。使學生在解題中思考有向,有序,有通常規律可尋。
2 共同參與,發展思維。要充分發揮學生的主體作用,突出學生的主體地位,使他們成為復習活動的主角,給予學生充分發揮的學習時間,讓他們去說,去做暴露他們的思維過程,激發學生的思維潛能。只有這樣教師的主導作用才能得到體現,教師的指導才能有的放失,真正落在實處。
因此,在基礎復習時,我們借助與現代教學手段,通過學生搶答,辨析,自己歸納一些數學概念,并給學生可能多的動手,動腦,討論的時間去探索,使各層次的學生都得到知識的滿足,提高了學習效果。綜合題教學過程中,“點”——點中要害,“透”——透徹理解,及時總結,一定要把思路與方法教給學生,同時教師要評析到位,從細微處入手,讓學生分析,清楚錯誤原因,清楚自己薄弱環節,熟悉一般分析思路,并與學生一起深入研討。
三、精心設計,綜合訓練,訓練能力
1.精心設計綜合訓練題。訓練題的設計要把握住全面覆蓋初中數學知識,突出教材重點,明確中考的特點與熱點,在模擬訓練題的具體設計上應考慮到,考教材上哪些內容,考查哪些思想方法和能力,以什么樣的題型反映,設計哪些思維障礙,從框架上、題型上把握 本地中考的特色,擬定或選編3——4套綜合訓練題;二是精心組織綜合訓練,依據復習總體安排對訓練程序、時間、方式進行認真構思,要把雙基、能力訓練,心理訓練,規范訓練有機結合起來,重在能力的提高。
2.以練為主,講、練、評有機結合。綜合訓練復習要以練為主,講、練、評有機結合,切忌“考試”+“講題”的方法。應通過一套試題的訓練,分析錯誤的原因。在對存在問題進行歸納整理的基礎上,組織評講。
評講不可逐一照試卷講題,應從培養能力入手,加強辨析,歸因分析,展示命題人的命題心理和考生答題心理。重在導析、導思、導法。
3.綜合訓練,綜合評價,培養能力。綜合訓練不僅是對“雙基”的強化訓練和知識缺漏的補償,對能力培養的強化與提高,而且包括對學生的心理訓練良好習慣與品質的訓練。要注重綜合考查、綜合評價、培養能力、提高整體水平。
四、著眼素養、注重應用、發展能力
數學教育的最終目的,是培養學生的創新意識、應用意識、及綜合能力。而且數學能力只有在形成為數學知識和解答數學問題的過程中,教師可以自覺 地、有目的地加以培養。這樣就可以大大地加快數學能力的形成和發展,使各種思維方法合理、簡捷,最大限度地發揮學生創造性能力。本人分析了近十年來各省市的中考能力題,認為:在學生已有的基礎上,可以通過閱讀理解,推理分析,總結規律,歸納其結論;聯系實際,注重應用,培養探索、創新能力是中考命題必然趨勢,因此在組織學生進行復習時,本人利用創意新穎、富有時代感的應用性、實踐性、創造性、開放性問題來激活學生的思維。
總之,在初中數學總復習中,夯實基礎是根本;方法引導,共同參與,培養能力是關鍵;精心設計,綜合訓練,訓練能力是核心;著眼素質,注重應用,發展能力是目的。只有這樣才能以不變應萬變,以一題帶一片,開發學生的思維空間,真正訓練學生的綜合能力水平。
數學學習方法7
一、溫故法
學習新概念前,如果能對孩子認知結構中原有的適當概念作一些結構上的變化來引進新概念,則有利于促進新概念的形成。
二、操作法
對有些概念的教學,可以從感性材料出發,讓孩子在操作中去發現概念的發生和發展過程。
三、類比法
這種方法有利于分析兩相關概念的異同,歸納出新授內容有關知識;有利于幫助孩子架起新、舊知識的橋梁,促進知識遷移,提高探索能力。
四、喻理法
為正確理解某一概念,以實例或生活中的趣事、典故作比喻,引出新概念.
五、置疑法
這種方法是通過揭示教學自身的矛盾來引入概念,以突出引進新概念的必要性和合理性,調動孩子了解新概念的強烈的動機和愿望。
六、創境法
如在講相遇問題時,為讓孩子對相向運動的各種可能的情況有所感受,可以從研究"鼓掌時兩只手怎樣運動"開始。通過拍手體驗,在邊問、邊議中逐步講解。實踐證明,如此使孩子猶如身臨其境去體驗并理解有關知識,能很快準確地掌握相關的數學概念。
數學學習方法8
有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。試想一下,小學的加、減、乘、除運算要不是背熟了“乘法九九表”,你能順利地進行運算嗎?盡管你理解了乘法是相同加數的和的運算,但你在做9*9時用九個9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定 (a≠0)等等。因此,我覺得數學更像游戲,它有許多游戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些游戲規則,誰就能順利地做游戲;誰違反了這些游戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鐘,如果背不出這三個公式,將會對今后的學習造成很大的麻煩,因為今后的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手 初一。
數學學習方法9
對于考研數學來說,要拿高分其實很簡單,考研數學初期復習原則:
一、早準備、早計劃、早復習
二、按照大綱復習
三、重視基礎
四、靈活運用,另同學們在復習考研數學時重點抓。
1、兩個重要極限,未定式的極限、等價無窮小代換
2、處理連續性,可導性和可微性的關系
3、微分方程:一是一元線性微分方程,第二是二階常系數齊次/非齊次線性微分方程
4、級數問題,主要針對數一和數三
5、一維隨機變量函數的分布
6、隨機變量的數字特征
7、參數估計
對待考研數學,在掌握了相關概念和理論之后,首先應該自己試著去解題,即使做不出來,對基本概念和理論的理解也會深入一步。因為數學畢竟是個理解加運用的科目,不練習就永遠無法熟練掌握。解不出來,再看書上的解題思路和指導,再想想,如果還是想不出來,最后再看書上的詳細解答。在這里溫馨提示大家,在做題時不要太輕易的選擇放棄,想一會兒沒有思路就去看答案,一定要仔細開動腦筋想過之后,實在不行再求助于外力,讓別人給你解答你錯在哪里,你的哪個邏輯點是應該修正的,然后再去找正確的方法。
加強綜合解題能力的訓練,熟悉常見考題的類型和解題思路,力求在解題思路上有所突破。考研試題和教科書的習題的不同點在于,前者是在對基本概念,基本定理和基本方法充分理解的基礎上的綜合應用,有較大的靈活性,往往一個命題覆蓋多個內容,涉及到概念,直觀背景、推理和計算等多種角度。
經統計考研數學復習中最重要的就是做題。然而是做相同的題目,不同的人收獲的卻大相徑庭。其中一個很重要的原因就是:做題后的總結和分析。事實上,無論是做教材上的習題還是歷年真題,都應該從宏觀和微觀兩個層次上去總結分析題目的考點,歸納題目的解題方法,對于獨特的處理方法和運算技巧還需要特別的留意。
數學學習方法10
五年級下學期是前的最后一個學期,對于整個小學階段的數學學習起著至關重要的作用,只有這一關過好了,才可能在的備考中游刃有余。所以這學期的奧數學習應該有更強的針對性,針對自己的實際情況和目標選擇合適的班型。
學習重點難點解析:
五年級屬于小學高年級,孩子進入五年級以后,隨著年齡的增長,孩子的計算能力,認知能力,邏輯分析能力都比以前有很大的提高,這個時期是奧數思維形成的關鍵時期,是學奧數的黃金時段,所以是否把握住五年級這個黃金時段,關系到以后的成與敗。那么在整個五年級階段都有哪些重點知識呢?為了孩子更好的把握五年級的學習重點,下面就介紹一下五年級的關鍵知識點。
1.進入數學寶庫的分析方法——遞推方法:任何事物的發展總是從簡單到復雜,奧數也是一樣,對于復雜問題,我們不妨先從最簡單的情況入手,通過處理簡單的問題,我們可以從中得到規律或者訣竅,從而來解決復雜的問題,這就是遞推方法。比如說:平面上20xx條直線最多有幾個交點?同學們第一眼看到這個問題時,肯定會想畫20xx條直線相交然后再數交點個數,那該是多麻煩!其實我們可以先來解決簡單點的情況,分別找到1條、2條、3條、4條……這些直線有多少個交點。
1條直線最多有0個交點
2條直線最多有1個交點
3條直線最多有3個交點
4條直線最多有6個交點
5條直線最多有10個交點
6條直線最多有15個交點
……
所以20xx條直線有1+2+3+4+5+…+20xx=2015028個交點。
那么聰明的你,你能算出20xx條直線最多可以把圓分成幾部分么?
2.變化無窮、形跡不定的行程問題:提到行程問題,同學們可能就感到頭疼,的確不錯,因為行程問題中各個物體的速度、時間、路程都在變化,而且各個物體都是在運動中,位置是隨著時間在變化,所以分析起來就很麻煩,為了更好的解決這個問題,我們把行程問題進行了細分:基本行程(單個物體)、平均速度、相遇、追及、流水行船、火車過橋、火車錯車、鐘表問題、環形線路上行程。只要我們掌握這些每個小類型中的訣竅,形成一種分析思路,復雜的行程問題無非是這些類型的變形而已,解決起來就容易多了。
3.抽象而又雜亂的數論問題:數論是從五年級的核心知識,無論是在哪本教材里,都用了很多的章節來講解數論,要想解決復雜的數論問題,我們首先得掌握數論的基本知識:數的奇偶性、約數(現在叫因數)、倍數、公約數及最大公約數、公倍數及最小公倍數、質數、合數、分解質因數、整除、余數及同余等。這些基本知識點里又有些非常有代表性的例題,只要能掌握好這些知識點,然后做一定量的數論綜合習題,碰到難的數論問題我們就容易解決了。
4.有趣的抽屜原理:生活中有很多有趣的事情,比如說:把4個蘋果放到3個抽屜里,無論你怎么放,總有某個抽屜里至少有2個蘋果,這就是抽屜原理。
對于抽屜原理我們只要找到蘋果的個數a與抽屜的個數b,我們就可以得到下面的結論:
若a÷b=r……
當q=0時,我們就說總有某個抽屜里至少有r個蘋果;
當q0時,我們就說總有某個抽屜里至少有(r+1)個蘋果。
比如說把32個蘋果放進8個抽屜里,因為32÷8=4,無論怎么放,總有某個抽屜里有4個蘋果。如果把35個蘋果放進8個抽屜里,因為35÷8=4……3,無論怎么放,總有某個抽屜里有4+1=5個蘋果。
但是大部分的奧數題是沒有告訴我們抽屜的個數的,那樣我們就得自己構造抽屜,從而找出抽屜的個數。
5.圖形面積計算:求圖形的面積也是奧數中的一個難點,對于這類題我們首先要掌握好各種基本圖形的面積計算公式,然后記住一些重要的結論:比如說三角形的等積變形、直角三角形中30度所對的邊是斜邊的一半、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中邊與面積的關系。在計算面積時的方法有:直接計算法、割補法、方程法等。在圖形面積計算中,難題往往得添加輔助線,這個就是難點所在,因為添加輔助線非常靈活,這就要我們多做些這方面的題,多積累一些添加輔助線的技巧,做到心中有數。
數學學習方法11
數學是一門思維性、邏輯性、連貫性很強的學科,它是符號、數字、推理與運算、圖形的結合,學生在學習中注意力往往容易分散,教師如果不注意對學生興趣的培養,則極容易使學生覺得枯燥無味,產生厭學情緒,興趣是最好的老師,是行為的原動力,托爾斯泰曾說:成功的教學需要的不是強制,而是激發學生的興趣。“一個人對學習有了興趣,就能全身心的投入學習中,一定要注意采用多種教學手段去培養和激發學生的興趣”。其中學習方法的掌握,也能促進學生學習的興趣。古人云“學而時習之”“溫故而知新”對今天的學生來說仍是很有用的學習方法,復習時,歸納總結我認為是其中重點之一,掌握歸納的內容是關鍵,及時的歸納能使學習效果顯著,事半功倍。
歸納的內容包括以下幾種:
一、歸納知識
尤其是數學知識前后聯系緊密,且知識呈現一種上升趨勢,若能歸納好,有關知識就能熟練應用。例如:函數內容,八年級內容中,先講函數定義,然后學習正比例函數,一次函數,進而研究函數的圖像與性質,點坐標與解析式的關系,確定解析式的方法,為九年級學習的反比例函數,二次函數提供了研究的方法。
二、歸納解題方法
解題方法雖然很多,但總有一些常用方法,例如:證明“線段相等”是很常見的題型,常見方法有:中點定義,等量代換,等量加減,全等三角形對應邊相等,等角對等邊,軸對稱性質,中心對稱性質,平行四邊形的對邊相等,矩形對角線相等,等腰梯形對角線相等,角平分線性質,線段垂直平分線性質等,然后總結常見方法有:全等三角形對應邊相等,平行四邊形對邊相等,矩形對角線相等,等角對等邊,線段垂直平分線性質等,這樣做題中就會比較容易確定解題方法。
三、歸納幾何內容分析問題的方法
數學問題的解決,分析問題最關鍵,綜合法最常用,另外還有根據經驗猜測法,例如:“五角星形狀圖形五個內角之和是180度”,則從三角形內角和是180度考慮,把五個內角之和轉化為某一個三角形的內角和。
四、歸納易錯易混知識及考點
學生對于知識的掌握局限于當堂學會,對于作業中出錯的問題不重視,以致于在考試中錯誤的問題仍得不到修正,所以應該讓學生學會歸納易錯題型及知識點。例如在學習一元一次方程解法中,對于每一步需要注意的問題都要進行歸納,對于去分母這一步要注意每一項都乘以公分母,一定不要漏項,尤其是無分母項一定不要漏乘;另外分子要當做一個整體來對待,必要時要對分子加括號,尤其分子是一個多項式時要加括號,對于去括號這一步要注意符號問題,如果括號前是負號一定要各項都改變符號,不要漏掉后面的項,對于移項這一步要注意,以等號為界限,從等號一邊移到另一邊才需要變號,只在等號一邊交換位置而不過等號,一定不要變號,合并同類項這一步要注意系數相加減中的減法,減去一個數等于加上這個數的相反數,一定要按這個要求做,系數化為一這一步要注意在結果中系數做的是分母,還要注意符號問題一定不要掉符號。
每章節的考點題型也必需要歸納,例如:分式這一章考點有分式的性質,分式有意義的條件,分式的值為零的條件,分式的加減乘除混合運算,分式的化簡求值等考點,另外分式的化簡求值是中考必考題型。
新課標要求下的學生不但要學習,而且要學會學習,學會合作,學會交流,學會創新,學會發展,更要為終身學習儲備學習方法。
所以在教學中要注意培養學生的學習方法,尤其是歸納總結要培養。作為教師我們的任務不僅要很好的傳播和學習已經形成了知識,而且要注意培養學生獨立觀察,盡量讓學生動腦思考,學生動口表述,盡量讓學生發現問題,歸納總結問題,一定要體現教師主導作用,學生主體地位。
數學學習方法12
一、熟悉考試題型,合理安排做題時間。
其實,不僅僅是數學考試,在參任何一門考試之前,你都要弄清楚或明確幾個問題:考試一共有多長時間,總分多少,選擇、填空和其他主觀題各占多少分。這樣,你才能夠在考試中合理分配考試時間,一定要避免在不值得的地方浪費大量的時間,影響了其他題的解答。
拿安徽省的數學高考題為例,安徽省數學高考滿分為150分,時間是2小時,其中選擇題是12道,每題5分,共60分;填空題4道,每題是4分,共16分,解答題一共74分。所以在了解這些內容后,你一定要根據自己的情況,合理安排解題時間。
一般來說,選擇題填空題最遲不宜超過40分鐘,按照我們新東方培養的標準是讓學生在30分鐘之內高效的完成選擇填空題。你必須留下一個多小時甚至更多的時間來處理后面的大題,因為大題意味著你不僅要想,還要寫。
二、確保正確率,學會取舍,敢于放棄。
考試時,一定要根據自己的情況進行取舍,這樣做的目的是:確保會做的題目一定能夠拿分,部分會做或不太會做的題目盡量多拿分,一定不可能做出的題目,盡量少投入時間甚至壓根就不去想。
對于程度較好的學生,如果感覺前面的選擇填空題做的很順利,時間很充裕,在前面幾道大題穩步完成的情況下,可以沖擊下最后的壓軸題,向高分沖擊。
對于程度一般的學生,首先要保證的是前面的填空選擇題大部分分值一定能夠穩拿,甚至是拿滿。對于大題的前幾題,也盡量多花點時間,一定不要在會做的題目上無謂失分,對于大題的后兩題,能做幾問就做幾問,即使后面的幾問不去做,也一定要保證前面的分數,因為最后兩題題目的性價比遠遠不如前面的題目實惠。
對于程度較差的學生,首先,填空選擇能會做的就一定要做對,對于大題,能寫幾問就寫幾問,而最后兩道壓軸題如果讀完之后覺得過難的話,我建議大膽放棄,不要覺得心疼,因為你即使花了很長時間去做去想也不見得能多拿幾分,如果把這些時間用在選擇填空題中,可能會收益更大。
這個方面,大家也不必盲目模仿別人的做法,還是那句話,要根據自己的情況,自己斟酌。
許多沒有考試技巧的學生經常出現的情況是,所有的題目都想做,但所有的題目都完成的匆匆忙忙、漏洞百出,本來會做的題由于匆忙或掉以輕心而失分,而后面的一些大題即使在卷子上寫了很“多”,卻發現只能得到1分2分。這樣的同學就是在考試的方法上很失敗,我們應該吸取這樣的教訓。
三、快速準確,不擇手段
考試中有選擇題、填空題和解答題,其中選擇填空題跟解答題的本質區別是它們是不需要寫出解答步驟的,其實命題人已經暗示了我們,選擇填空題只要你把答案做出來,無論你用什么方法都是允許的。許多不會考試的人常犯的錯誤和大忌,就是把每一道題都當作解答題按部就班的去解答,這樣,即使你能把題目做對,但是浪費了大量不必要的時間。
其實,許多選擇填空題仔細觀察題目中的數字和選項,就可以排除一些選項,完全可以降低難度甚至直接選出正確答案,許多填空題往往有許多靈活的技巧,但由于這些技巧在解答題當中往往不適宜寫在卷面中,所以經常被我們所忽視掉了。
比如,做選擇填空題常用的巧妙方法有:排除法、數形結合、畫圖觀察、代入驗證等等方法。這些技巧和方法也是我們在平常的題目講解中要為學生灌輸和滲透的內容,我們在教學中也會逐步培養學生的這種意識。
數學學習方法13
1、時間安排問題
學習不良者應該反省下列幾個問題:(1)是否很少在學習前確定明確的目標,比如要在多少時間里完成多少內容。(2)學習是否常常沒有固定的時間安排。(3)是否常拖延時間以至于作業都無法按時完成。(4)學習計劃是否是從來都只能在開頭的幾天有效。(5)一周學習時間是否不滿10小時。(6)是否把所有的時問都花在學習上了。
2、注意力問題
(1)注意力完全集中的狀態是否只能保持10至15分鐘。(2)學習時,身旁是否常有小說、雜志等使我分心的東西。(3)學習時是否常有想入非非的體驗。(4)是否常與人邊聊天邊學習。
3、學習興趣問題
(1)是否一見書本頭就發脹。(2)是否只喜歡文科,而不喜歡理科。(3)是否常需要強迫自己學習。(4)是否從未有意識地強化自己的學習行為。
4、學習方法問題
(1)是否經常采用題海戰來提高解題能力。(2)是否經常采用機械記憶法。(3)是否從未向學習好的同學討教過學習方法。(4)是否從不向老師請教問題。(5)是否很少主動鉆研課外輔助讀物。
一般而言,回答上述問題,肯定的答案(回答“是”)越多,學習的效率越低。每個有學習問題的學生都應從上述四類問題中列出自己主要毛病,然后有針對性地進行治療。例如一個學生毛病是這樣的:在時間安排上,他總喜歡把任務拖到第二夫去做;在注意力問題上,他總喜歡在寢室里邊與人聊天邊讀書;在學習興趣上,他對專業課不感興趣,對旁系的某些課卻很感興趣;在學習方法上主要采用機械記憶法。這位學生的病一列出來,我們就能夠采取有效的治療措施了。
數學學習方法14
一、課后及時回憶
如果等到把課堂內容遺忘得差不多時才復習,就幾乎等于重新學習,所以課堂學習的新知識必須及時復習。
可以一個人單獨回憶,也可以幾個人在一起互相啟發,補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節,循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。
二、定期重復鞏固
即使是復習過的內容仍須定期鞏固,但是復習的次數應隨時間的增長而逐步減小,間隔也可以逐漸拉長?梢援斕祆柟绦轮R,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節進行知識歸納總結,必須把相關知識串聯在一起,形成知識網絡,達到對知識和方法的整體把握。
三、科學合理安排
復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數與間隔時間,并非間隔時間越長越好,而要適合自己的復習規律。
四、重點難點突破
對所學的素材要進行分析、歸類,找出重、難點,分清主次。在復習過程中,特別要關注難點及容易造成誤解的問題,應分析其關鍵點和易錯點,找出原因,必要時還可以把這類問題進行梳理,記錄在一個專題本上,也可以在電腦上做一個重難點“超市”,可隨時點擊,進行復習。
五、復習效果檢測
隨著時間的推移,復習的效果會產生變化,有的淡化、有的模糊、有的不準確,到底各環節的內容掌握得如何,需進行效果檢測,如:周周練、月月測、單元過關練習、期中考試、期末考試等,都是為了檢測學習效果。檢測時必須獨立,限時完成,保證檢測出的效果的真實性,如果存在問題,應該找到錯誤的根源,并適時采取補救措施進行校正。目前市場上練習冊多如牛毛,請在老師的指導下選用。
數學學習方法15
一、課前預習
在老師上課之前,將所學內容先預習一遍,心中有個大致的印象,也有困惑,這樣帶著問題去聽課,學習上就占有了主動權。不預習聽課是無目的,被動的,預習后在聽課是有目的,主動的,學習效果兩者存在較大的差異。
二、課堂聽講
課堂是獲取知識,培養能力的主戰場,在課下需要較長時間弄不明白的問題,在課堂上經過老師講解幾分鐘就可以弄明白。所以提高學習效率的關鍵就是提高課堂45分鐘的效率,保證課上時間全身心的投入,緊跟老師的教學思路,積極思考老師提出的每個問題,不留“夾生飯”,這樣可以為完成課下作業帶來充裕的時間,省去課下的許多麻煩。
三、整理筆記
俗話說得好“好記性不如爛筆頭”,記筆記是理解記憶的過程,課堂上要記老師講的重要結論,典型例題,典型的解題方法,課下要記作業檢測中存在的問題和教訓,建立自己的“背忘錄”,以備復習參考。
四、復習功課
“重復是記憶之母”,“拳不離手,曲不離口”等都是表明復習對于學好功課的重要性。復習有天復習,周復習,月復習,考前復習之分,復習的過程是先在自己大腦中“過過電影”,回憶不起來的知識點在看筆記,問老師或同學。
五、作業解題
做作業的目的是為了鞏固復習當天所學內容,培養規范的答題習慣,提高分析問題和解決問題的能力。一般作業題都是老師精選的題目,做作業要按照先復習,規范作答,再檢查的順序進行,不存在敷衍了事不規范答題和抄襲作業的現象。
六、獨立探究和合作探究
新課程提倡學生要學會“獨立地,探究地,合作地學習”,這樣能使他們獲得親身參與研究探索的體驗,培養發現問題和解決問題的能力,培養收集、分析和利用信息的能力,學會分享與合作,培養科學態度和社會責任感,
七、記憶表達
有的同學認為數學能力是靠理解和大量做題獲得的,不是靠記憶獲得的,這種觀點不全對。數學中有許多概念,公式和結論是必須記憶且要記住的,例如有的同學在利用導數解題忘記了導數公式,在解三角函數問題時忘記了三角變換公式等,“工欲善其事,必先利其器”,數學也是需要記憶的。同時在學習過程中要自覺地培養用數學語言交流的能力,例如立體幾何中,不會將文字語言,符號語言和圖形語言互相轉化,解答概率問題和應用題時存在“掐頭去尾燒中間”現象等都是不會用數學語言表達的結果。
八、應試
一個學生考試成績如何不僅取決于其實力,會取決于其在考試過程中的發揮。在考前要精心備考,調整好應試的心態,暗示自己“我已胸有成竹,我能行”,在考試過程中要“我易人易不大意,我難人難不怕難”,力創佳績。
【數學學習方法15篇】相關文章:
數學高效學習方法09-22
數學學習方法作文09-04
文科數學學習方法07-12
小學奧數學習方法11-23
奧數學習方法集結10-11
奧數學習方法大全11-10
初中奧數學習方法11-08
考研數學學習方法02-28
奧數學習方法(11篇)11-08
奧數學習方法11篇11-08