圓錐的體積說課稿(精選15篇)
在教學工作者實際的教學活動中,通常需要用到說課稿來輔助教學,通過說課稿可以很好地改正講課缺點。我們應該怎么寫說課稿呢?以下是小編幫大家整理的圓錐的體積說課稿,希望對大家有所幫助。
圓錐的體積說課稿 1
今天我說課的內容是九年義務教育六年制小學數學(人教版)第十二冊第三單元“圓錐的體積”。下面將從教材分析、教法、學法、教學過程等四方面加以說明。
一、教材分析
1、教材的地位和作用
“圓錐的體積”是在學習了圓的周長和面積,長方體、正方體、圓柱體的體積計算,以及初步認識圓錐特征的基礎上進行教學的。通過本節課內容的教學,發展學生的操作能力、實踐能力,培養創新精神,為今后學生的深層次學習和自主發展打好基礎。
2、教學目標
(1)探索并掌握圓錐體積的計算方法
(2)經歷觀察、猜想、實驗等過程,發展學生操作能力、歸納推理能力,培養創新精神。
(3)培養學生身主探索與合作交流的精神,滲透轉化的數學思候和方法。
3、教學重點、難點
(1)重點:探索并掌握圓錐的體積的計算方法。
(2難點:理解圓錐體積計算方法的推導過程。
二、教法
《數學課程標準》明確指出,教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學和知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。本節課我主要采用引導發現法|實驗操作法,同時借助多媒體等教學手段,增大教學容量,提高教學質量。
三、學法
古人說:“授人之魚,只供一餐所需;而給人之漁,終身愛用不盡!彼刭|教育也要求學生裝不僅“學會”,更要“會學”。這節課我將指導學生動手實驗、合作交流、歸納推理、濃度嘗試練習等方法,使學生成為數學學習的主人。
結合教法、學法,教具、學具準備有:
1、多媒體教學軟件
2、多個空心圓柱、圓錐容器
3、裝有水的水桶
四、教學過程設計
(一)觀察發現
1、(電腦出示)一個圓柱體,提問:怎樣計算圓柱的體積?
2、(電腦演示)把圓柱的上面逐漸縮小,一直縮小成一點,這時圓柱體就變成了一個圓錐體。提問:你有什么發現和想法?
3、板書課題
本環節由復習提問開始,以舊引新。電腦演示直觀形象,動態地展現了變化過程,滲透轉化的數學思想和方法。引導學生觀察發現,大膽猜想,激發了學生的學習興趣和強烈的探究欲望,為下面的推導圓錐的體積起到鋪墊作用,從而自然導入新課。
(二)探究創新
這個環節分三個步驟進行。
第一步“實驗操作”
學生迫切希望通過實驗來證實自己的猜想,所以學習興趣盎然,注意力高度集中,積極投入到實驗中。
1、各學習小組拿出準備好的一個圓柱體和A、B、C、D四個圓錐體(其中只有A、D與圓柱等底等高),分別用四個圓錐裝滿水倒入圓柱中,觀察各要幾次倒滿,并把實驗情況做好記錄。提示思考“通過實驗你發現了什么?
當學生發現A、D兩個圓錐所用的次數不定時,設疑:A、D兩個圓錐與圓柱有什么關系呢?
學生得出AD兩個圓錐與圓柱等底等高。再次設疑:是不是所有的圓錐都是正好用三次就倒滿面與它等底等高的圓柱呢?從而進入第二層實驗。
2、各學習小組再拿大小不一、等底等高的.圓柱與圓錐兩對,用兩個圓錐裝滿水后分別倒入與它等底等高的圓柱中,觀察各要幾次正好倒滿。
3、這一步通過實驗操作,既能培養學生觀察、比較、分析及語言表達能力,更能學會與人合作、與人交流思維的過程和結果。實驗沒有像教科書那樣直接給出一組等底等高的圓柱和圓錐容器,是因為那樣操作,學生只是按現有程序演示了一下書本上的結論而已,既無發現,更無創新,反而容易忽視等底等高這一前提條件。沒有用沙土而用水做實驗,因為沙土顆粒之間有空隙,結果不十分準確。我設計的實驗操作過程,與科學研究相類似,注重科學性、全面性,學生操作自由度大,有利于學生創新力的發揮,有利于創新能力的形成。
第二步:推導公式
1、討論:圓錐的體積與圓柱的體積有什么關系?讓學生充分交流后達成共識“圓錐的體積是和它等底等高的圓柱體積的三分之一。
2、圓錐的體積怎樣計算?計算公式是什么?根據學生的回答板書:V錐=1/3SH
本步驟從感性認識上升到理性認識,進一步理解和鞏固新知,培養學生嚴謹的邏輯思維能力,語言表達的條理性、準確性,并突出教學重點。
第三步:嘗試解題
1、學生閱讀教科書刊42頁內容,找出關鍵句、劃出重點詞。這樣做是為了提高學生的數學閱讀能力。
2、放手讓學生嘗試獨立解答例1、例2,指名學生板示解題過程,集體訂正。及時把探索到的新知應用于實踐,教師從中得到教學信息反饋以便調整教學內容,學生體驗到“再創造”與“成功”的喜悅,進一步激發他們學習的自主性。
(三)應用深化
這個環節是把已抽象化了的概念應用到新折情境中去,是概念的復現和深化,主要以練習形式進行,具體設計如下:
1、基本練習
(1)判斷對錯。
(2)圓錐體積是圓柱體積的確良1/3。()
(3)圓柱體積等于與它等底等高的圓錐體積的3倍。()
(4)一個圓柱體積是45立方厘米,與它等底等高的圓錐體積是15立方厘米。()
(5)教科書43頁“做一做”的1、2題。
2、綜合練習
(1)一個圓錐底面周長是31.4厘米,高是12厘米。它的體積是多少立方厘米?
(2)一個底面積是12056平方厘米的圓錐體,這個圓錐體的底面積是多少?
3、思考討論題
(電腦演示)工地上有一個近似于圓錐的沙堆。你能想辦法算出它的體積嗎?說說測量和計算的方法。
練習設計從基本題入手,過渡到變式題,發展到綜合題,引伸到思考題,符合由淺入深、循序漸進的教學原則。練習過程中訓練了學生裝的解題能力和技巧,運用所學知識解決實際問題的能力。
(四)回歸評價
1、這節課你學會了什么?這里用提問的方式引導學生回顧歸納所學知識內容、學習方法,能強化知識的理解和記憶,促進學生掌握學法。
2、對自己和別人你有什么話要說?學生對自己和別人的學習過程及學習效果進行評價,能強化自信、自立、自強意識,激發自主發展的內動力。
3、布置作業:教科書44頁第3題。適量的作業可及時反饋學生學習情況,培養學生良好的學習習慣和品質。
板書設計:(略)
這樣的板書設計體現了新知的形成過程,又顯示了具體的解題方法,突出教學重點,簡潔明了。
圓錐的體積說課稿 2
【教材分析】
本節課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。本節內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,直觀引導學生經歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養學生抽象的邏輯思維能力,激發學生的想象力.
【設計理念】
數學課程標準中指出:應放手讓學生經歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發展空間觀念,從而提高學生自主解決問題的能力。
【教學目標】
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態度與價值觀:培養學生勇于探索的求知精神,感受到數學來源于生活,能積極參與數學活動,自覺養成與人合作交流與獨立思考的良好習慣。
【教學重點】
圓錐體積公式的理解,并能運用公式求圓錐的體積。
【教學難點】
圓錐體積公式的推導
【學情分析】
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發現問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對于新的知識教學,他們一定能表現出極大的熱情。
【教法學法】
試驗探究法小組合作學習法
【教具學具準備】
多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
【教學課時】
2課時
【教學流程】
第一課時
一、回顧舊知識
1、你能計算哪些規則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
【設計意圖】通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
二、創設情景激發激情
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
【設計意圖】以生活中的數學的形式進行設置情景,引疑激趣遷移,激發學生好奇心和求知欲。(揭示課題:圓錐的體積)
三、試驗探究合作學習(探討圓柱與圓錐體積之間的關系)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數學專用名詞:等底等高
【設計意圖】通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發現了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數據(教師巡視指導每組的.試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
教學預設:
(1)圓椎的體積是圓柱體積的3倍;
(2)圓錐的體積是圓柱體積的三分之一;
(3)當等底等高時,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
【設計意圖】通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調動學生主動探索的意識,激發了學生的求知欲,培養了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發現了圓柱與圓錐的底和高各有什么關系?
2、觀察老師的試驗,你發現了不等底等高的圓柱與圓錐的體積之間還有三分之一的關系嗎?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
【設計意圖】通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
四、實踐運用提升技能
1、判斷題:【題目內容見多媒體展示】獨立思考---抽生匯報---說明理由---師生評議
2、口答題:【題目內容見多媒體展示】獨立思考---抽生匯報---學生評議
3、拓展運用:【課本例題3】學生分析題意---小組合作解答---學生解答展示---師生評議
【設計意圖】通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發展的空間,讓他們有跳起來摘果子的機會,以達到培養能力、發展個性的目的。
五、談談收獲:
這節課你學到了什么呢?
六、課堂作業:
1、做在書上作業:練習四第4、7題
2、坐在作業本上作業:練習四第3題
圓錐的體積說課稿 3
一、學習內容:
教師提供小學數學六年級下冊14頁----17頁。
二、學生提供:
等底等高的圓柱和圓錐教學用具各一個,小水盆,一些綠豆。
三、學習目標:
1、結合具體情景和實踐活動,了解圓錐的體積或容積的含義,進一步體會物體體積和容積的含義。
2、經歷“類比猜想---驗證說明”的探索圓錐體積計算方法的過程,掌握圓錐體積的計算方法,能正確計算圓錐的體積,并解決一些簡單的實際問題。
四、重點難點:
重點:圓錐的體積計算。
難點圓錐的體積公式推導。
關鍵:圓錐的體積是與它等底等高的圓柱體積的三分之一。
五、學習準備:
等底等高的圓柱和圓錐教學用具各一個,一個三角形和一個長方形。
看看你們能不能發現這兩個圖形之間隱藏的關系?你有什么發現?
長方形的長等于三角形的底,長方形的寬等于三角形的高。
你的發現真了不起。這種情況在數學中叫做“等底等高”。在“等底等高”的條件時,它們的面積又有什么樣的關系呢?
三角形的面積等于長方形面積的一半或長方形面積是三角形面積的2倍。
六、布置課前預習:
點撥自學:
1、圓柱和圓錐有哪些相同的地方?
2、圓柱和圓錐有哪些不同的地方?
3、圓錐的體積和圓柱的體積有什么關系呢?
請小組開始討論。注意,這里的圓柱和圓錐指的就是圖上的圓柱和圓錐喲!按照預習中學生存在的問題,教師加以點撥。
七、交流解惑:
它們的底面積相等,高也相等
圓柱有無數條高,圓錐只有一條高。圓錐體積比圓柱小……
動手做實驗:把圓錐裝滿綠豆,倒入圓柱中,看倒幾次能把圓柱裝滿。
通過實驗操作,得出了正確的`科學的結論:圓錐的體積等于和它等底等高的圓柱體積的三分之一。
組內交流
組際解疑
老師點撥
八、合作考試
1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?(口算)
2、沈老師在大梅沙玩,將沙堆成一個圓錐形,底面半徑約3分米,高約2.7分米,求沙堆的體積。
。ㄖ涣惺讲挥嬎悖
3、在打谷場上,有一個近似于圓錐的小麥堆,測底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?
(只列式不計算)
4、如圖,求這枝大筆的體積。
。▎挝唬豪迕祝
。ㄖ涣惺讲挥嬎悖
5、將一個底面半徑是2分米,高是4分米的圓柱
形木塊,削成一個最大的圓錐,那么削去的體積
是多少立方分米?(口算)
九、自我總結:
通過今天的學習,我學會了,以后我會在方面更加努力的。
十、教學反思:
本節課通過交流、問答、猜想等形式,調動學生學習的積極性,激發學生強烈的探究欲望,學生迫切希望通過實驗來證實自己的猜想,所以做起實驗來就興趣極高,在實驗過程中通過學生的親身體驗知識的探究的過程,加深學生對所學知識的理解,學生學習的積極性被調動起來了,學生學得輕松、愉快。充分讓學生體會到了等底等高的圓錐的體積是圓柱的三分之一。
圓錐的體積說課稿 4
【教學目標】
1、使學生理解求圓錐體積的計算公式、
2、會運用公式計算圓錐的體積、
【教學重點】
圓錐體體積計算公式的推導過程、
【教學難點】
正確理解圓錐體積計算公式、
【教學步驟】
一、鋪墊孕伏
1、提問:
(1)圓柱的體積公式是什么?
。2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側面和高、
2、導入:同學們,前面我們已經認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節課我們就來研究這個問題、(板書:圓錐的體積)
二、探究新知
。ㄒ唬┲笇骄繄A錐體積的計算公式、
1、教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法、老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土、實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里、倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發現了什么?
2、學生分組實驗
3、學生匯報實驗結果(課件演示:圓錐體的體積1、2、3、4、5)
①圓柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿、
、趫A柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿、
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿、
4、引導學生發現:
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的1/3、
5、推導圓錐的體積公式:
圓錐的體積是和它等底等高圓柱體積的1/3
V=1/3Sh
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習
圓錐的底面積是5,高是3,體積是()
圓錐的底面積是10,高是9,體積是()
(二)教學例1
1、例1一個圓錐形的零件,底面積是19平方厘米,高是12厘米、這個零件的體積是多少?
學生獨立計算,集體訂正、
2、反饋練習:一個圓錐的底面積是25平方分米,高是9分米,她它的.體積是多少?
3、思考:求圓錐的體積,還可能出現哪些情況?(圓錐的底面積不直接告訴)
。1)已知圓錐的底面半徑和高,求體積、
(2)已知圓錐的底面直徑和高,求體積、
(3)已知圓錐的底面周長和高,求體積、
4、反饋練習:一個圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
三、全課小結
通過本節的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)
四、隨堂練習
1、求下面各圓錐的體積、
。1)底面面積是7.8平方米,高是1.8米、
。2)底面半徑是4厘米,高是21厘米、
(3)底面直徑是6分米,高是6分米、
【板書設計】
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的1/3、
圓錐的體積說課稿 5
教學內容:
教科書第20~21頁例5及相應的試一試,練一練和練習四的第1~3題。
教學目標:
1.組織學生參與實驗,從而推導出圓錐體積的計算公式。
2.會運用圓錐的體積計算公式計算圓錐的體積。
3.培養學生觀察、比較、分析、綜合的能力以及初步的空間觀念。
4.以小組形式參與學習過程,培養學生的合作意識。
5.滲透轉化的數學思想。
教學重點:
理解和掌握圓錐體積的計算公式。
教學難點:
理解圓柱和圓錐等底等高時體積間的倍數關系。
教學資源:
等底等高的圓柱和圓錐容器一套,一些沙或米等。
教學過程:
一、聯系舊知,設疑激趣,導入新課。
1.我們已經知道了哪些立體圖形體積的求法?(學生回答時老師出示相應的教具---長方體,正方體圓柱體,然后板書相應的計算公式。)
2.我們是用什么方法推出圓柱體積的計算公式的?(是把圓柱體轉化為長方體來推導的。板書:轉化)
3.(出示教具)大家覺得這個圓錐與哪個立體圖形的關系最近呢?(老師比較學生指出的圓柱與圓錐的底和高,引導學生發現這個圓柱與圓錐等底等高。)
4.大家覺得我們今天要研究的圓錐的體積可能轉化為什么圖形來研究比較簡單呢?能說說自己的理由嗎?
5.它們的體積之間到底有什么關系呢?
二、實驗操作、推導圓錐體積計算公式。
1.課件出示例5。
。1)通過演示使學生知道什么叫等底等高。
。2)讓學生猜想:圖中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?
。3)實驗操作,發現規律。
(用學具演示)在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數看,你發現圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。
老師把圓柱里的黃沙倒進圓錐,問:把圓柱內的沙往圓錐內倒三次倒光,你又發現什么規律?
。4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的'圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
2.教師課件演示
3.學生討論實驗情況,匯報實驗結果。
4.啟發引導推導出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積1/3=底面積高1/3
用字母表示:V=1/3Sh
小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以1/3?
5.教學試一試
。1)出示題目
(2)審題后可讓學生根據圓錐體積計算公式自己試做。
。3)批改講評。注意些什么問題。
三、發散練習、鞏固推展
1.做練一練第1.2題。
指名一人板演,其余學生做在練習本上。集體訂正,強調要乘以1/3。
。.做練習四第1.2題。
學生做在課本上。之后學生反饋。錯的要求說明理由。
四、小結
這節課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
學生交流
五、作業
練習四第3題。
圓錐的體積說課稿 6
教學內容:
第25~26頁,例2、例3及練習四的第3~8題。
教學目的:
1、通過分小組倒水實驗,使學生自主探索出圓錐體積和圓柱體積之間的關系,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,解決實際生活中有關圓錐體積計算的簡單問題。
2、借助已有的生活和學習經驗,在小組活動過程中,培養學生的動手操作能力和自主探索能力。
3、通過小組活動,實驗操作,巧妙設置探索障礙,激發學生的自主探索意識,發展學生的空間觀念。
教學重點:
掌握圓錐體積的計算公式。
教學難點:
正確探索出圓錐體積和圓柱體積之間的關系。
教學準備:
圓錐與等底等高的圓柱,圓錐與不等底等高的圓柱。
教學過程:
一、復習
1、圓錐有什么特征?(使學生進一步熟悉圓錐的特征:底面、側面、高和頂點)
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。
二、新課
1、教學圓錐體積的計算公式。
。1)回憶圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的、
。2)能不能也通過已學過的圖形來求呢?圓錐的體積可能和什么圖形的體積有關?圓錐的體積該怎樣求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)
。3)拿出等底等高的圓柱和圓錐各一個,通過演示,使學生發現“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的`體積有什么關系?”
。4)先在圓錐里裝滿水,然后倒入圓柱。讓學生注意觀察,倒幾次正好把圓柱裝滿?
。ń處熥寣W生注意,記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)
。5)這說明了什么?(這說明圓錐的體積是和它等底等高的圓柱的體積的)還可以怎么說?
板書:圓錐的體積=1/3×圓柱的體積=1/3×底面積×高,字母公式:V=1/3Sh
拿不等底等高的圓柱與圓錐進行實驗。為什么倒3次不能剛好倒,和剛才不一樣呢?
強調:“等底等高”。
問:Sh表示什么?為什么要乘1/3?
練習:一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
一個圓錐的體積是15立方厘米,與它等底等高的圓柱的體積是多少?
2、教學練習四第3題
。1)這道題已知什么?求什么?已知圓錐的底面積和高應該怎樣計算?
。2)引導學生對照圓錐體積的計算公式代入數據,然后讓學生自己進行計算,做完后集體訂正。
說明:不要漏乘1/3,計算時能約分的要先約分。
3、鞏固練習:完成練習四第4題。
4、教學例3、
。1)出示例3
已知近似于圓錐形的沙堆的底面直徑和高,求這堆沙堆的的體積。
。2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
。3)題目的條件中不知道圓錐的底面積,應該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據圓錐的體積公式求出沙堆的體積)
(4)分析完后,指定兩名學生板演,其余學生將計算步驟寫在教科書第26頁上、做完后集體訂正。(注意學生最后得數的取舍方法是否正確)
三、鞏固練習
1、做練習四的第7題。
學生先獨立判斷這三句話是否正確,然后全般核對評講。
2、做練習四的第8題。
(1)引導學生學生思考回答以下問題:
、龠@道題已知什么?求什么?
、谇髨A錐的體積必須知道什么?
、矍蟪鲞@堆煤的體積后,應該怎樣計算這堆煤的重量?
(2)讓學生做在練習本上,教師巡視,做完后集體訂正。
3、做練習四的第6題。
。1)指名學生先后回答下面問題:
、賵A柱的側面積等于多少?
、趫A柱的表面積的含義是什么?怎樣計算?
、蹐A柱體積的計算公式是什么?
④圓錐的體積公式是什么?
(2)學生把計算結果填寫在教科書第28頁的表格中,做完后集體訂正。
四、總結
這節課學習了哪些內容?你是如何準確地記住圓錐的體積公式的?
第七課時教學反思
課件演示
俗話說“眼見為實”,所以相對于課件演示而言,教師在全班演示會更直觀,結論也更具信服性。
俗話又說“紙上得來終覺淺,絕知此事要躬行”,所以相對于看教師演示與自己親自動手實驗,親身經歷探究印象會更深刻。
課堂如果以4——6人小組為單位進行實驗,全班至少得有9套以上教具?晌倚,F有教具數量不夠。如果要求學生課前自制教具,他們暫時無法制作出與圓柱等底等高高的圓錐。所以只好改為教師演示,學生觀察。
僅用一次實驗就得出結論是不嚴謹的,所以課堂上必須讓學生歷經多次不同實驗后才能得到正確結論。根據學,F有教具,今天我準備了兩套不同大小的等底等高圓柱、圓錐作為器材。在實驗中,我不僅讓學生清晰地看到將圓錐內的水倒3次可以注滿與它等底等高的圓柱,同時,還讓他們看到圓柱內的水再反倒回等底等高的圓錐時要倒3次。不僅自己示范演示,也讓學生參與演示實驗。最后,我還用不等底等高的圓柱與圓錐做實驗,強調實驗結果只有在“等底等高”的條件下才能成立。因為實驗環節落實較好,全班作業正確率高。
圓錐的體積說課稿 7
教學目標:
1、通過動手操作參與實驗,發現等底等高的圓柱圓錐體積之間的關系,從而得出圓錐體積的計算公式。
2、能運用公式解答有關的實際問題。
3、滲透轉化、實驗、猜測、驗證等數學思想方法,培養動手能力和探索意識。
教學過程:
一、創設情境,引發猜想
1.電腦呈現出動畫情境(伴圖配音)。
夏天,森林里悶熱極了,小動物們都熱得喘不過氣來。一只小白兔去動物超市購物,在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)
2.引導學生圍繞問題展開討論。
問題一:狐貍貪婪地問:小白兔,用我手中的雪糕跟你換一個,怎么樣?(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當?)
問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)
問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法與小組同學交流一下,再向全班同學匯報)
過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了圓錐的體積后,就會弄明白這個問題。
二、自主探索,操作實驗
下面,請同學們利用老師提供的實驗材料分組操作,自己發現屏幕上的圓柱與圓錐體積間的關系,解決電腦博士給我們提出的問題。
出示思考題:
。1)通過實驗,你們發現圓柱的'體積和圓錐體積之間有什么關系?
。2)你們的小組是怎樣進行實驗的?
1.小組實驗。
。1)學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、水、水槽、量杯、等底等高的圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子等,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關系的,也有5倍關系的。
。2)同組的學生做完實驗后,進行交流,并把實驗結果寫在長條黑板上。
2.大組交流。
。1)組織收集信息。
學生匯報時可能會出現下面幾種情況,教師把這些信息逐一呈現在插式黑板上:
、賵A柱的體積正好是圓錐體積的3倍。
、趫A柱的體積不是圓錐體積的3倍。
、蹐A柱的體積正好是圓錐體積的8倍。
、軋A柱的體積正好是圓錐體積的5倍。
⑤圓柱的體積是等底等高的圓錐體積的3倍。
、迗A錐的體積是等底等高的圓柱體積的1/3。
。2)引導整理信息。
指導學生仔細觀察,把黑板上的信息分類整理。(根據學生反饋的實際情況靈活進行)
(3)參與處理信息。
圍繞3倍關系的情況討論:
、僬堖@幾個小組同學說出他們是怎樣通過實驗得出這一結論的?
、谀膫小組得出的結論更加科學合理一些?
圓錐的體積是等底等高的圓柱體積的1/3。
。ㄍ怀龅鹊椎雀撸⒄埶麄兡贸鰧嶒炗玫钠鞑,自己比劃、驗證這個結論。)
③引導學生自主修正另外兩個結論。
3.誘導反思。
。1)為什么有兩個小組實驗的結果不是3倍關系呢?
。2)把一個空心的圓錐慢慢按入等底等高且裝滿水的圓柱形容器里,剩下水的體積是多少?這時和圓柱體積有什么關系?
4.推導公式。
嘗試運用信息推導圓錐的體積計算公式。
。1)這里Sh表示什么?為什么要乘1/3?
。2)要求圓錐體積需要知道哪兩個條件?
5.問題解決。
童話故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(動畫演示:等底等高)之后播放狐貍拿著圓錐形雪糕離去的畫面。
三、運用公式,解決問題
1.教學例1。一個圓錐形的零件,底面積是19平萬厘米,高是12厘米。這個零件的體積是多少?
2.學生嘗試行算,指名板演,集體訂正。
3.引導小結:不要漏乘1/3;計算時,能約分時要先約分。
四、鞏固練習,拓展深化
五、質疑問難,總結升華
通過這節課的學習,你們探索到了什么?怎樣推導出圓錐體積公式的?
回到童話情節。我們發現三個圓錐形的雪糕換一個與它等底等高的圓柱形雪糕公平合理,如果狐貍只用一個圓錐形的雪糕和小白兔交換,而不使小白兔吃虧,那么圓錐形的雪糕應該是什么樣的?配合用課件演示。
圓錐的體積說課稿 8
教學目標
1、知識目標:使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。、
2、能力目標:培養學生初步的空間觀念,動手操作能力和邏輯思維能力。
3、情感目標:向學生滲透知識間可以相互轉化的辯證唯物主義思想,讓學生學習將新知識轉化為原有知識的學習方法、
教學重難點
教學重點:圓錐的體積計算。
教學難點:圓錐的體積計算公式的推導。
教學工具
ppt課件。
教學過程
一、導入新課
1、出示鉛錘
師:同學們,我們剛認識了圓錐,在學習“圓錐的認識”時認識了這個物體—鉛錘。鉛錘的外形是圓錐形的,這個鉛錘所占空間的大小叫做這個鉛錘的'體積。
問:你們有沒有辦法來測量這個鉛錘的體積?
生:排水法
師:同學們回答很積極,想到了之前學過的排水法,那我們對這個方法進行一下評價(學生想到了,并不是所有的圓錐都可以用排水法來測量體積。比如一些龐大的圓錐形物體)
2、PPT出示圓錐形麥堆和圓錐形的高大的建筑物
像這種比較大的圓錐形的物體就不適合用排水法測量體積,所以我們需要找到一個解決此類問題的普遍的方法。
出示課題圓錐的體積
二、探究新知
1、回憶
師:我們學過那些形狀的物體的體積的計算方法
生:長方體正方體圓柱體(學生邊說,師邊PPT出示圖片)
師:我們在推導圓柱體體積的計算方法的時候是將圓柱體轉化長方體或者正方體,轉化前后體積不變,你覺得圓錐體和哪種形狀的物體有關系呢?
生:圓柱體
師:為什么?
生:圓錐體和圓柱體都有圓形的底面
2、猜測
師:既然大家都認為圓錐體和圓柱體由一定的關系,你能大膽猜測一下,圓錐體和圓柱體的體積之間有怎樣的關系么?
。▽W生猜測,找學生說說猜測的結果)
3、驗證
師:有了猜測我們就通過實驗來驗證我們的猜測(利用學具進行驗證,一邊實驗,一邊填寫實驗記錄單)
。ㄕ覍W生讀一讀表格中需要填寫的內容,并提問,比較圓柱和圓錐的時候,是比較的什么?為學生的實驗操作做一個引領。操作過程6—8分鐘)
4、實驗后討論,并分組匯報實驗結果
。ㄔ趯嶒炛形以O置了兩次不同的實驗,第一次是等底等高的圓柱和圓錐,第二次是等底不等高的圓柱和圓錐,以便對比得出結論,并不是所有的圓柱和圓錐都符合3倍關系,是有前提條件的)
5、結論
通過操作發現:圓錐的體積是同它等底等高的圓柱體積的1/3。
板書:圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
三、運用知識
1、PPT出示填空和判斷
師:我們學會了求圓錐的體積的計算方法,現在我們利用所學知識來解決生活中的實際問題。
2、PPT出示例題3
。▽W生計算,計算過程中巡視學生解題情況,挑選兩種不同的解題方法展示)
四、拓展
PPT出示拓展題
五、總結,談收獲
通過本節課的學習,你有哪些收獲?
圓錐的體積說課稿 9
教學內容:
教材第11~17頁圓錐的認識和體積計算、例1。
教學要求:
1、使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2、使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3、培養學生初步的空間觀念和發展學生的思維能力。
教具準備:
長方體、正方體、圓柱體等,根據教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的的教具。
教學重點:
掌握圓錐的特征。
教學難點:
理解和掌握圓錐體積的計算公式。
教學過程:
一、鋪墊孕伏:
1、說出圓柱的體積計算公式。
2、我們已經學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產中,我們還常常看到下面一些物體(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節課,就學習圓錐和圓錐的體積。(板書課題)
二、自主探究:
1、認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2、根據教材第16頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3、利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側面是一個曲面。
(2)認識圓錐的頂點,從圓錐的頂點到底面圓心的距離是圓錐的`高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關系?
4、學生練習。
口答練習三第1題。
5、教學圓錐高的測量方法。(見課本第17頁有關內容)
6、讓學生根據上述方法測量自制圓錐的高。
7、實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)
(2)讓學生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?
(3)實驗操作,發現規律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數看,你發現圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。
老師把圓柱里的黃沙倒進圓錐,問:把圓柱內的沙往圓錐內倒三次倒光,你又發現什么規律?
(4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發引導推導出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積13=底面積高13
用字母表示:V=13Sh
(6)小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以13?
8、教學例l
(1)出示例1
(2)審題后可讓學生根據圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
圓錐的體積說課稿 10
教學目標:
1、通過動手操作參與實驗,發現等底等高的圓柱體和圓錐體之間的關系,從而得出圓錐體的體積公式。
2、能運用公式解答有關的實際問題。
3、滲透轉化、實驗、猜測、驗證等數學思想方法,培養動手能力和探索意識。
教學重點:
通過實驗的方法,得到計算圓錐體積的公式。
教學難點:
運用圓錐體積公式正確地計算體積。
教學過程:
一、創設情境,引發猜想
在一個悶熱的中午,小白兔買了一個圓柱形的雪糕,狐貍買了一個圓錐形的雪糕,這兩個雪糕是等底等高的。這是狐貍要用它的雪糕和小白兔換。你覺得小白兔有沒有上當?如果狐貍用兩個雪糕和小白兔換你覺得公平嗎?假如你是小白兔,狐貍有幾個雪糕你才肯和它換呢?把你的想法與小組的同學交流一下,再向全班同學匯報。
小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了圓錐的體積后,就會弄明白這個問題。
二、自主探索,操作實驗
1、出示學習提綱。
。1)利用手中的學具,動手操作,通過試驗,你發現圓柱的體積與圓錐體積之間有什么關系?
。2)你們小組是怎樣進行實驗的?
。3)你能根據實驗結果說出圓錐體的體積公式嗎?
。4)要求圓錐體積需要知道哪兩個條件?
2、小組合作學習。
3、回報交流。
結論:圓錐的體積是等底等高的.圓柱體積的1/3。
公式:V=1/3Sh
4、問題解決。
小白兔和狐貍怎樣交換才能公平合理呢?它需要什么前提條件?
5、運用公式解決問題。
教學例題1和例題2
三、鞏固練習
1、圓錐的底面積是5,高是3,體積是()
2、圓錐的底面積是10,高是9,體積是()
3、求下面各圓錐的體積。
。1)底面面積是7.8平方米,高是1.8米。
。2)底面半徑是4厘米,高是21厘米。
。3)底面直徑是6分米,高是6分米。
4、判斷對錯,并說明理由。
。1)圓柱的體積相當于圓錐體積的3倍、()
。2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2:1。()
。3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米。()
四、拓展延伸
一個圓錐的底面周長是31?4厘米,高是9厘米,它的體積是多少立方厘米?
五、談談收獲
六、作業
圓錐的體積說課稿 11
教學目標
1、推導出圓錐體積的計算公式。
2、會運用圓錐的體積公式計算圓錐的體積。
重點難點
圓錐體積公式的推導過程。
教學過程
一、板書課題
師:同學們,今天我們來學習“圓錐的體積”(板書課題)。
二、出示目標
理解并掌握圓錐的體積計算公式,并能運用公式解決實際問題。
三、自學指導
認真看課本第33頁到第34頁的例2和例3,邊看書,邊實驗,理解圓錐的體積計算方法,并將例3補充完整。想:
1、圓錐的體積與圓柱的體積有什么關系?
2、圓錐的`體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能正確地回答思考題并能做對檢測題!
檢測題
完成課本第34頁“做一做”第1、2題。
小組合作,校正答案
后教
口答
一個體積是1413立方分米的鐵塊,可以制造成多少個底面半徑是3分米、高是5分米的圓錐形零件?
小組內互相說。
當堂訓練
1、必做題:
課本第35頁第5、6、7題。(做在作業本上)
2、選做題:
有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數保留兩位小數)
圓錐的體積說課稿 12
教學目標:
1、通過實驗發現等底等高的圓柱和圓錐體積之間的關系,從而得出體積的計算公式,能運用公式解答有關實際問題。
2、通過動手操作參與實驗,發現等底等高的圓柱和圓錐體積之間的關系,并通過猜想、探索和發現的過程,推導出圓錐的體積公式。
3、通過實驗,引導學生探索知識的內在聯系,滲透轉化思想,感受數學方法的內在魅力,激發學生參加探索的興趣。
教學重點:通過實驗的方法,得到計算圓錐的體積。
教學難點:運用圓錐的體積公式進行正確地計算。
教學準備:等底等高的圓柱和圓錐容器模型各一個。
教學過程:
一、復習導入
師:同學們,請看大屏幕(課件出示圓柱削成最大圓錐)。
1、圓柱體積的計算公式是什么?(指名學生回答)
2、圓錐有什么特征?
同學們,圓柱的體積我們已經知道怎么求,那與它等底等高的.圓錐的體積同學們知道怎么求嗎?讓我們一同走進圓錐的體積與等底等高的圓柱體體積有什么關系的知識課堂吧。ò鍟簣A錐的體積)
二、探究新知
課件出示等底等高的圓柱和圓錐
1、引導學生觀察:這個圓柱和圓錐有什么相同的地方?
學生回答:它們是等底等高的。
猜想:
(1)、你認為圓錐體積的大小與它的什么有關?
。2)、你認為圓錐的體積和什么圖形的體積關系最密切?猜一猜它們的體積有什么關系?
2、學生動手操作實驗
。1)、用圓錐裝滿水(要裝滿但不能溢出來)往圓柱倒,倒幾次才把圓柱倒滿?
(2)、通過實驗,你發現了什么?
小結:通過實驗我們發現圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是與它等底等高圓柱體積的三分之一。
3、教師課件邊演示邊敘述:現在圓錐和圓柱里都是空的。看看圓柱和圓錐有什么相同的地方?(等底等高)請同學們注意觀察,用圓錐裝滿水往圓柱里倒,倒幾次才把圓柱倒滿?
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱體積的三分之一。(板書:圓錐的體積=1/3×圓柱體積)
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢?(板書:圓錐的體積=1/3×底面積×高)
師:用字母應該怎樣表示?(V=1/3sh)
師:在這個公式里你覺得哪里最應該注意?
三、教學試一試
一個圓柱形零件,底面積是170平方厘米,高是12厘米。這個零件的體積是多少立方厘米?
四、鞏固練習
1、計算圓錐的體積
2、判一判
3、算一算
4、拓展延伸
五、總結
通過這節課的學習,你有什么收獲呢?
六、板書:
圓錐的體積=圓柱的體積×1/3
圓錐的體積=底面積×高×1/3
用字母表示V=1/3sh
圓錐的體積說課稿 13
教學內容:
練習四第4~12題和第23頁思考題
教學目標:
1.使學生進步理解、掌握圓錐的體積計算方法,能根據不同的條件計算出圓錐的體積。
2.提高學生解決生活中實際問題的能力。
3.養成良好的學習習慣。
教學重點:
進步掌握圓錐體積的計算方法。
教學難點:
圓柱和圓錐體積之間的聯系與區別。
教學過程:
一、復習舊知
1.復習體積計算。
。1)提問:圓錐的體積怎樣計算?
。2)口答下列各圓錐的體積。
、俚酌娣e3平方分米,高2分米。
、诘酌娣e4平方厘米,高4、5厘米。
2.引入新課。
今天這節課,我們練習圓錐體積的計算,通過練習,還要能應用圓錐體積計算的方法解決一些簡單的實際問題。
二、教學新課
組織練習。
1.做練習四第4題。
學生獨立計算。
2.做練習四第5題。
把等底等高的圓柱體積和圓錐體積相互轉化,從已知的圓柱體積得出相應的圓錐體積,從已知的圓錐體積得出相應的圓柱體積,繼續加強對等底等高圓柱和圓錐體積關系的理解。
3.做練習四第6題。
出示第6題的圖。
引導分析:根據圖示的各個立體圖形的底面直徑與高,尋找與圓錐體積相等的圓柱,可以從圓錐體積是等底等高圓柱體積的1/3,推理出體積相等的圓柱與圓錐,如果底面積相等,圓錐的高是圓柱的3倍圓柱的高是圓錐的1/3;如果高相等,圓錐的底面積是圓柱的3倍圓柱的底面積是圓錐的1/3。還要注意到,大圓的直徑是小圓的'3倍小圓直徑是大圓的1/3,大圓的面積則是小圓的9倍小圓的面積是大圓的1/9。
4.做練習四第7題。
。1)提問:圓錐體積最大時與圓柱的關系是什么?(等底等高)
接著讓學生獨立練習。
。2)讓學生自主地提出其他問題,進一步的掌握圓錐和圓柱的關系。
5.做練習四第8題。
聯系實際,解決問題。
6.做練習四第9題。
讓學生動手操作,理解三角形繞它的兩條高旋轉一周形成兩個大小不同的圓錐。在此基礎上讓學生獨立計算。
7.做練習四第12題。
出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測量哪些數據?怎樣測量直徑和高。請同學們回去測量你用第115頁圖制作的圓錐,求出它的體積來。
三、課堂小結
這節課練習了圓錐的體積計算和應用:計算體積需要知道底面積和高。如果沒有告訴底面積,我們要先求半徑算出底面積,再計算體積。應用圓錐體積計算方法,有時候還可以計算出圓錐形物休的重量。
四、布置作業
1.練習四第10、11題。
2.學有余力學生完成思考題。
圓錐的體積說課稿 14
一、說教材
1、教材簡析
首先說一說這節課的內容。圓錐是小學幾何初步知識最后一個單元中的內容,是學生在學習了平面圖形和長方體、正方體、圓柱體這三種立體圖形的基礎上又學習的一種新的立體圖形。(播放課件)圓錐的體積也是在學習過長方體、正方體和圓柱體積的基礎上的又一個延伸,也為以后學生系統學習立體幾何打下基礎。(播放體積公式課件)
2、學情分析
通過前幾節課的學習,學生已經對圓柱、圓錐的基本特征和各部分名稱有了清楚的認識,知道了圓柱體積的計算方法,并能運用圓柱體積的計算公式解決具體問題,且經歷了圓柱體積計算方法的推導過程,具有了初步的類比思維意識。絕大多數學生的動手實踐能力比較強,但學生的空間想像能力因年齡特點,還有待進一步加強訓練。
3、教學目標
根據以上所述我制定了這節課的教學目標:
知識與技能目標:理解并掌握圓錐體積公式的推導過程,學會運用圓錐體積計算公式求圓錐的體積;
過程與方法目標:能解決一些有關圓錐的實際問題,通過圓錐體積公式的推導實驗,增強學生的實踐操作能力和觀察比較能力;
情感與價值目標:通過實驗,引導學生探索知識的內在聯系,滲透轉化思想,培養交流與合作的團隊精神。
4、教學重難點
根據學生學情和教學目標,我確立了以下教學重難點。
教學重點:能正確運用圓錐的體積計算公式求圓錐的體積。
教學難點:理解圓錐體積公式的推導過程。
5、教具、學具準備
多媒體教學軟件、空心圓柱、圓錐容器、裝有水的水桶。
二、說教法
《數學課程標準》明確指出,教師應激發學生的學習積極性,給學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、思想和方法,獲得廣泛的數學活動經驗。本節課我主要采用引導發現法、實驗操作法,同時借助多媒體等教學手段,增大教學容量,提高教學質量。
波利亞說過:“學習任何知識的最佳途徑是由自己去發現,因為這種發現理解最深刻,也最容易掌握其中的內在規律、性質和聯系。”因此,我在課堂上設計的實驗,讓學生動手操作,推導出圓錐的體積公式,有助于發展學生的空間觀念,培養觀察能力、思維能力和動手操作能力。
三、說學法
有句話說的非常好“人人學有價值的數學,人人都能獲得必要的數學,不同的人在數學上得到不同的發展”這是新世紀數學課程的基本理念。新課程標準還強調引導學生主動參與、親自實踐、獨立思考、合作探究。因此我在講求教法的同時,更重視對學生學法的指導。
1、實驗轉化法
有些知識單憑解說是無法讓學生真正理解的,只有通過實驗,反復操作,才能深刻領悟其中的內在奧秘。在指導學生進行實驗操作時,我著重從三個方面進行引導:首先,讓學生做好操作的準備;其次,告訴他們操作的方法步驟和注意點;第三,引導學生在操作中比較、發現、總結。這樣通過實驗操作推導得出圓錐的體積公式,培養了學生觀察比較、交流合作、概括歸納等能力。
2、嘗試練習法
蘇霍姆林斯基認為:“成功的歡樂是一種巨大的情緒力量,它可以促進兒童好好學習的'愿望!北竟澱n在教學例題時,讓學生嘗試自己獨立解答,挖掘學生的潛能,讓他們體驗學習成功的樂趣,調動學生學習的積極性和主動性,發揮學生的主體作用,養成良好的學習習慣。
四、說教學程序
本節課我設計了以下六個教學程序:
1、復習舊知,做好鋪墊。
利用復習圓柱、圓錐的認識和圓柱的體積公式的推導及其應用,為新知識的遷移做好鋪墊。通過以舊引新,不僅讓學生感受到圓錐與圓柱的聯系,而且還能體驗得到新知的親切,從而產生學習新知的欲望。
2、談話激趣,導入新課。
很多同學都喜歡吃冰淇淋,你們看,冰淇淋蛋筒的形狀是什么樣的?你們有沒有想過一個圓錐形蛋筒能裝多少冰淇淋呢?(板書課題)怎樣求它的體積?能不能把它轉化成我們已經學過的圖形的體積來求?轉化成什么圖形最合適?猜猜看?下面我們就來探討這個問題。(通過一系列問題聊天,激發興趣,活躍氣氛引出課題)
3、實驗操作,探究新知。
這個環節分三個步驟進行。
第一步:實驗操作
學生通過剛才的談話已經迫切希望通過實驗來證實自己的猜想,所以學習興趣盎然,注意力高度集中,積極投入到實驗中。
1、我準備出一個圓柱和一個圓錐容器,先讓學生們自己觀察兩個物體的聯系,引導他們說出等底等高。(此過程我會拿著兩個容器到學生中去讓他們不僅僅能看到還能摸一摸,從而更直觀的感受等底等高。)
2、質疑生趣
我會拋出問題:同學們你們說如果把圓錐倒滿水然后往圓柱里放,幾次能把圓柱也放滿水?(讓學生根據自己的認知大膽猜測)
3、動手操作,實驗出真知
帶著疑問、猜測做實驗。請兩組學生進行操作,其他學生一起幫他們做記錄。實驗結果就是三次能裝滿。(播放課件演示實驗過程)
4、反復質疑,實驗解決
是不是所有的圓錐都是正好用三次就倒滿這個圓柱呢?(強化對等底等高的理解,小組討論各抒己見)這時拿一個小一點的圓錐容器繼續做一次實驗。實驗證明只有等底等高的圓錐裝滿水往圓柱里倒需要三次。
第二步:推導公式
1、討論:圓錐的體積與圓柱的體積有什么關系?讓學生充分交流。最終達成共識圓柱的體積是等底等高圓錐體積的3倍,即圓錐體積是等底等高圓柱體積的。這時我利用多媒體演示圓柱容器里的水體積的分解,再次肯定學生自己的觀點的準確性。
2、圓錐的體積怎樣計算?計算公式是什么?根據學生的回答板書:(出示課件)V錐=1/3SH本步驟從感性認識上升到理性認識,進一步理解和鞏固新知,培養學生嚴謹的邏輯思維能力,語言表達的條理性、準確性,突出教學重點。
4、嘗試練習,鞏固提高。
以上兩道題,指名學生板書解題過程,集體訂正。及時把探索到的新知應用于實踐,教師從中得到教學信息反饋以便調整教學內容,學生體驗到“再創造”與“成功”的喜悅,進一步激發他們學習的自主性。
5、拓展深化,綜合運用
工地上有一個近似于圓錐的沙堆。你能想辦法算出它的體積嗎?說說測量和計算的方法。
練習設計從基本題入手,過渡到變式題,發展到綜合題,引伸到思考題,符合由淺入深、循序漸進的教學原則。練習過程中訓練了學生的解題能力和技巧,運用所學知識解決實際問題的能力。
6、評價反思,自我提升
課末,我通過聊天形式引導學生通過反思、評價,梳理本課知識點,形成系統的知識結構,進一步鞏固本課教學內容。以下就是我進行的話題。
①這節課你學會了什么?這里用提問的方式引導學生回顧歸納所學知識內容、學習方法,能強化知識的理解和記憶,促進學生掌握學法。
、趯ψ约汉蛣e人你有什么話要說?讓學生對自己和別人的學習過程及學習效果進行評價,能強化自信、自立、自強意識,激發自主發展的內在動力。
、鄄贾米鳂I:練習四的有關練習。適量的作業可及時反饋學生學習情況,培養學生良好的學習習慣和品質。
五、板書設計
根據本課重難點和學生認知特點,我設計了簡潔明了而又形象直觀的板書。這樣的板書設計體現了新知的形成過程,又顯示了具體的解題方法,突出教學重點,形象直觀。
六、教學反思
1.要聯系生活學數學。在教學中我深切的體會到要讓學生學好數學就一定要讓他們明白:數學來源于生活,最終又應用于生活.要讓學生愛數學就先讓他們愛生活.這就需要我們在備課時不局限于教材,要結合生活實際去備課.2.教師一定要敢于給學生大量的時間與空間,讓學生經歷“發現問題——大膽猜想——實驗驗證——解決問題”的全過程,讓他們的才能與智慧得以施展,以學生為主體的觀念貫穿始終,充分發揮學生的自主性,生成和構建自己的知識體系。
3.學生課后反饋上來的問題是計算問題很大,公式會用但是計算出現問題了,以后要多鍛煉學生的計算能力。
(強兩點我簡單的概括了這節課我的理論支撐和設計構想,第三點是課后學生反映出來的問題。)本節課我的設計體現了數學核心素養中的數感、空間觀念幾何直觀、數據分析、運算能力及推理能力等幾方面。初步探究中,效果還需有待觀察。
圓錐的體積說課稿 15
今天我說課的內容是《六年級數學》(人教版)下冊第二單元《圓柱和圓錐》中的第二課時《圓錐的體積》。本次說課包括五個內容:說教材、說教法、說學法、說教學程序和說板書。
一、說教材
1、教材分析
“圓錐的體積”教學是在學生學習了立體圖形——長方體、正方體、圓柱體的基礎上,認識了圓柱和圓錐的特征,會計算圓柱的表面積、體積的基礎上進行教學的。
教材突出了探索體積計算公式的過程,引導學生在裝沙或裝米的實驗基礎上進行公式推導。通過觀察,比較,分析,推理,概括和抽象,自主發現圓錐的體積計算公式,進一步積累數學活動經驗.經歷數學化的過程,獲得解決問題的方法.
2、學情分析
學生以前學習了長方體、正方體,在此前又學了由曲面和圓圍成的立體圖形——圓柱,且經歷了圓柱體積計算方法的推導過程,具有了初步的類比思維意識。通過前一節《圓錐的認識》,學生對圓錐的特征也有了一些了解,對學生來說,求體積并非陌生的新知識,只是像圓錐這樣學生認為不規則幾何體的圖形,求體積有困難。
對于六年級的學生來說,絕大多數學生的動手實踐能力比較強,有一定的空間觀念基礎,但公式的推導過程卻比較抽象、枯燥,對于他們來說該部分內容是一個難點。同時對于圓錐體積計算的實際運用,從以往的經驗判斷,學生對3倍的關系難以理解,教師應幫助學生理解。
3、教學目標
知識與技能目標:通過學生參與實驗,從而推導出圓錐體積的計算公式,并運用公式計算圓錐的體積;解決一些有關圓錐體積的實際問題。
過程與方法目標:通過實驗推導圓錐體積公式的過程,增強學生的實踐操作能力,并培養學生觀察、比較、分析、總結歸納的學習方法。
情感與價值目標:通過實驗,引導學生探索知識的內在聯系,滲透轉化思想,并感受發現知識的快樂,激發學習的興趣,感受數學與生活的密切聯系,培養學數學、用數學的樂趣。
4、教學重難點
教學重點:理解和掌握公式,能正確運用公式解決實際問題。
教學難點:圓錐體積公式的推導過程。
5、教具、學具準備
教具:一個圓柱、2個與圓柱等底、等高的圓錐、沙子;學生自制的圓柱及各類型的圓錐若干、三角尺、直尺
二、說教法
在公式推導階段,為了打破枯燥無味的公式推導過程,在教授本節課時,結合小學生的認知規律,以引導法、實驗法、觀察法,探索法為主,以討論法、練習法為輔,實現教學目標。在教學中,從:
①、讓學生測量自制圓柱、圓錐的高(在上一節讓學生自己動手制作圓柱、圓錐);
、凇⒆寣W生用自制的等底等高、等高不等底、等底不等高圓柱與圓錐分別裝沙實驗入手。通過學生自己動手測量、實驗操作后總結實驗規律。《圓錐的體積》說課稿
通過小組實驗、討論、交流,歸納、推導出圓錐體積的計算公式:v=《圓錐的體積》說課稿sh
在公式運用方面:采取逐步深入的模式,讓學生討論在:
、、已知圓錐的高與底面半徑;
、凇⒁阎獔A錐的高與底面直徑;
、、已知圓錐的高與底面周長三種情況下,如何使用公式計算。然后通過讓學生列舉身邊的實例,引入實際運用。
這樣,既充分發揮了學生的主體作用,又調動學生積極主動地參與教學的全過程。力求為學生創造一個自主探索與合作交流的環境,引導學生主動去從事觀察、猜想、實驗、驗證、推理與交流等數學活動,從而使學生形成自己對數學知識的理解和有效的學習策略。
三、說學法
以往的教學是教師處于主導地位,學生基本上是處于被動的聽講,被灌輸者的被動地位,這樣教出來的學生沒有靈活性,隨機應變的能力差,發現問題,分析問題,解決問題的能力差,學生的情感也低落。
新課改要求:教師要把課堂和時間還給學生,讓學生有充足的時間和廣闊的空間學習、探討、商量、研究,教師只是學生學習的指導者和參與者。
針對本節,在學法上主要采取:
1、學生在學習圓錐體積公式的推導時,通過自己動手進行操作實驗、觀察比較、討論小結,最終推導出圓錐的計算公式,從而初步學會運用實驗的方法來探索新知識。
2、充分發揮學生的主體作用:學生能做的盡量讓學生自己做,學生能想的盡量讓學生自己想,學生能說的盡量讓學生自己說。學生不能想的,教師啟發、引導學生想。
3、教師提出與所學課程內容有關的恰當合理的問題,讓學生在分析、討論、探索的`前提下爭取自己解決,對于有一定困難的問題,老師再從中提醒、點撥。從而挖掘學生的潛能,讓他們體驗學習成功的樂趣,調動學生學習的積極性和主動性,發揮學生的主體作用,養成良好的學習習慣。
四、說教學程序
本節課的教學,我安排了6個教學程序:
1、學生自主探索,預習
第一步:回憶《圓錐的認識》
(1)讓學生將他們準備的沙子或米拿到老師這里來,我們玩堆沙子游戲。我把它倒在桌子上,緩慢地倒,形成一個近似的圓錐,你們看這是什么形狀?
引導學生從沙堆的形狀:底面是個圓,有一個頂點,側面是一個斜面,抽象畫出圓錐的圖形(邊提問、邊引導、邊畫圖板書)。
頂點
圓心
高
(2)讓學生在圖中找出圓錐的頂點、畫出圓錐的高。向學生明確:從圓錐的頂點到底面圓心的距離是圓錐的高。(在圖上表示板書這條高)。
(3)圖里畫的這條高和底面圓的所有直徑有什么關系?
。4)怎樣測量圓錐高?(讓學生根據上述方法使用三角尺、直尺測量自制圓錐的高。)
第二步:回憶圓柱體積的計算公式
畫一個與上圖圓錐等底、等高的圓柱,指名學生回答,并板書公式:
圓柱的體積=底面積×高
v圓柱=s·h
第三步:課堂展示
。1)我想知道堆起的沙堆的體積怎么辦?
。2)能不能也通過已學過的圖形來求呢?轉化成什么圖形最合適?
。3)你感覺它和前面學過的那個圖形聯系密切?
。4)引導:可以通過實驗的方法,得到計算圓錐(沙堆)體積的公式。
2、實驗操作
這個環節分兩個步驟進行。
【圓錐的體積說課稿】相關文章:
圓錐的體積說課稿(精選13篇)11-05
小學六年級數學圓錐體積說課稿(通用3篇)07-09
小學數學《長方體和正方體體積》說課稿05-21
對大體積混凝土的認識10-20
大體積混凝土的特點10-31
大體積混凝土的簡述定義07-31
Word文件體積減小技巧11-06