1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數(shù)學說課稿:等差數(shù)列

        時間:2022-11-19 19:21:22 高中說課稿 我要投稿

        高中數(shù)學說課稿:等差數(shù)列

          作為一名默默奉獻的教育工作者,時常需要用到說課稿,編寫說課稿是提高業(yè)務素質(zhì)的有效途徑。那么問題來了,說課稿應該怎么寫?下面是小編收集整理的高中數(shù)學說課稿:等差數(shù)列,歡迎閱讀,希望大家能夠喜歡。

        高中數(shù)學說課稿:等差數(shù)列

        高中數(shù)學說課稿:等差數(shù)列1

        各位評委老師:

          下午好,今天我說課的內(nèi)容是人教版高一數(shù)學(上)§3.2等差數(shù)列(第一課時)的內(nèi)容。

          一、教材分析

          1、教材的地位和作用:

          數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

          2、教學目標

          根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標

          a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;初步引入“數(shù)學建!钡乃枷敕椒ú⒛苓\用。

          b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數(shù)與數(shù)列關系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

          c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結的良好思維習慣。

          3、教學重點和難點

          根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:

         、俚炔顢(shù)列的概念。

         、诘炔顢(shù)列的通項公式的推導過程及應用。

          由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對“數(shù)學建!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。

          二、學情教法分析:

          對于三中的高一學生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

          針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。

          三、學法指導:

          在引導分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

          四、教學程序

          本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業(yè),六個教學環(huán)節(jié)構成。

          (一)復習引入:

          1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應的一列函數(shù)值,從而數(shù)列的通項公式也就是相應函數(shù)的______。(N﹡;解析式)

          通過練習1復習上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。

          2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①

          3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②

          通過練習2和3引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情站境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

          (二) 新課探究

          1、由引入自然的給出等差數(shù)列的概念:

          如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,

          這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

          ① “從第二項起”滿足條件;

         、诠頳一定是由后項減前項所得;

         、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

          在理解概念的基礎上,由學生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學語言,歸納出數(shù)學表達式:

          an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

          1. 9 ,8,7,6,5,4,……;√ d=-1

          2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

          3. 0,0,0,0,0,0,…….; √ d=0

          4. 1,2,3,2,3,4,……;×

          5. 1,0,1,0,1,……×

          其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

          由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

          2、第二個重點部分為等差數(shù)列的通項公式

          在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項,公差d,由學生研究分組討論a4的.通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

          若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:

          a2 - a1 =d 即: a2 =a1 +d

          a3 – a2 =d 即: a3 =a2 +d = a1 +2d

          a4 – a3 =d 即: a4 =a3 +d = a1 +3d

          ……

          猜想: a40 = a1 +39d,進而歸納出等差數(shù)列的通項公式:

          an=a1+(n-1)d

          此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

          a2 – a1 =d

          a3 – a2 =d

          a4 – a3 =d

          ……

          an – an-1=d

          將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d (1)

          當n=1時,(1)也成立,

          所以對一切n∈N﹡,上面的公式都成立

          因此它就是等差數(shù)列{an}的通項公式。

          在迭加法的證明過程中,我采用啟發(fā)式教學方法。

          利用等差數(shù)列概念啟發(fā)學生寫出n-1個等式。

          對照已歸納出的通項公式啟發(fā)學生想出將n-1個等式相加。證出通項公式。

          在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學要求

          接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2 ,

          即an=2n-1 以此來鞏固等差數(shù)列通項公式運用

          同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

          (三)應用舉例

          這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。

          例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項

          (2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?

          在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關鍵是求出數(shù)列的通項公式an.

          例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

          在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

          例3 是一個實際建模問題

          建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

          這道題我采用啟發(fā)式和討論式相結合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數(shù)列,引導學生將該實際問題轉(zhuǎn)化為數(shù)學模型------等差數(shù)列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。

          設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數(shù)學實際問題引出等差數(shù)列問題,激發(fā)了學生的興趣;3.再者通過數(shù)學實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學模型,最后還原說明實際問題的“數(shù)學建!钡臄(shù)學思想方法

          (四)反饋練習

          1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

          2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

          目的:對學生加強建模思想訓練。

          3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

          此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

          (五)歸納小結(由學生總結這節(jié)課的收獲)

          1.等差數(shù)列的概念及數(shù)學表達式.

          強調(diào)關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

          2.等差數(shù)列的通項公式 an= a1+(n-1) d會知三求一

          3.用“數(shù)學建!彼枷敕椒ń鉀Q實際問題

          (六)布置作業(yè)

          必做題:課本P114 習題3.2第2,6 題

          選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。

          (目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

          五、板書設計

          在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。

        高中數(shù)學說課稿:等差數(shù)列2

          以下是高中數(shù)學《等差數(shù)列前n項和的公式》說課稿,僅供參考。

          教學目標

          A、知識目標:

          掌握等差數(shù)列前n項和公式的推導方法;掌握公式的運用。

          B、能力目標:

          (1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

          (2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數(shù)列的求和公式,培養(yǎng)學生類比思維能力。

          (3)通過對公式從不同角度、不同側面的剖析,培養(yǎng)學生思維的靈活性,提高學生分析問題和解決問題的能力。

          C、情感目標:(數(shù)學文化價值)

          (1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。

          (2)通過公式的運用,樹立學生"大眾教學"的思想意識。

          (3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學史,激發(fā)學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數(shù)學的心理體驗,產(chǎn)生熱愛數(shù)學的情感。

          教學重點:等差數(shù)列前n項和的公式。

          教學難點:等差數(shù)列前n項和的公式的靈活運用。

          教學方法:啟發(fā)、討論、引導式。

          教具:現(xiàn)代教育多媒體技術。

          教學過程

          一、創(chuàng)設情景,導入新課。

          師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項公式及其有關性質(zhì),今天要進一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數(shù)學習題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

          例1,計算:1+2+3+4+5+6+7+8+9+10.

          這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發(fā)言解答。

          生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

          生2:可設S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

          上面兩式相加得2S=11+10+......+11=10×11=110

          10個

          所以我們得到S=55,

          即1+2+3+4+5+6+7+8+9+10=55

          師:高斯神速計算出1到100所有自然數(shù)的各的方法,和上述兩位同學的方法相類似。

          理由是:1+100=2+99=3+98=......=50+51=101,有50個101,所以1+2+3+......+100=50×101=5050。請同學們想一下,上面的方法用到等差數(shù)列的哪一個性質(zhì)呢?

          生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq.

          二、教授新課(嘗試推導)

          師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據(jù)等差數(shù)列的性質(zhì),如何來導出它的前n項和Sn計算公式呢?根據(jù)上面的例子同學們自己完成推導,并請一位學生板演。

          生4:Sn=a1+a2+......an-1+an也可寫成

          Sn=an+an-1+......a2+a1

          兩式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)

          n個

          =n(a1+an)

          所以Sn=

          #FormatImgID_0#

          (I)

          師:好!如果已知等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則an=a1+(n-1)d代入公式(1)得

          Sn=na1+

          #FormatImgID_1#

          d(II) 上面(I)、(II)兩個式子稱為等差數(shù)列的前n項和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導學生總結:這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯(lián)系?[an=a1+(n-1)d,Sn=

          #FormatImgID_2#

          =na1+

          #FormatImgID_3#

          d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。

          三、公式的應用(通過實例演練,形成技能)。

          1、直接代公式(讓學生迅速熟悉公式,即用基本量觀點認識公式)例2、計算:

          (1)1+2+3+......+n

          (2)1+3+5+......+(2n-1)

          (3)2+4+6+......+2n

          (4)1-2+3-4+5-6+......+(2n-1)-2n

          請同學們先完成(1)-(3),并請一位同學回答。

          生5:直接利用等差數(shù)列求和公式(I),得

          (1)1+2+3+......+n=

          #FormatImgID_4#

          (2)1+3+5+......+(2n-1)=

          #FormatImgID_5#

          (3)2+4+6+......+2n=

          #FormatImgID_6#

          =n(n+1)

          師:第(4)小題數(shù)列共有幾項?是否為等差數(shù)列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學生發(fā)言解答。

          生6:(4)中的數(shù)列共有2n項,不是等差數(shù)列,但把正項和負項分開,可看成兩個等差數(shù)列,所以

          原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)

          =n2-n(n+1)=-n

          生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項結合都為-1,故可得另一解法:

          原式=-1-1-......-1=-n

          n個

          師:很好!在解題時我們應仔細觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數(shù)列的項數(shù),否則會引起錯解。

          例3、(1)數(shù)列{an}是公差d=-2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

          生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

          又∵d=-2,∴a1=6

          ∴S12=12 a1+66×(-2)=-60

          生9:(2)由a1+a2+a3=12,a1+d=4

          a8+a9+a10=75,a1+8d=25

          解得a1=1,d=3 ∴S10=10a1+

          #FormatImgID_7#

          =145

          師:通過上面例題我們掌握了等差數(shù)列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構造方程或方程組求另外兩個變量(知三求二),請同學們根據(jù)例3自己編題,作為本節(jié)的課外練習題,以便下節(jié)課交流。

          師:(繼續(xù)引導學生,將第(2)小題改編)

         、贁(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

         、谌舸祟}不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。

          2、用整體觀點認識Sn公式。

          例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學生解)

          師:來看第(1)小題,寫出的計算公式S16=

          #FormatImgID_8#

          =8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?

          生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

          師:對!(簡單小結)這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學問題的體現(xiàn)。

          師:由于時間關系,我們對等差數(shù)列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點如何來認識Sn公式后,這留給同學們課外繼續(xù)思考。

          最后請大家課外思考Sn公式(1)的逆命題:

          已知數(shù)列{an}的前n項和為Sn,若對于所有自然數(shù)n,都有Sn=

          #FormatImgID_9#

          。數(shù)列{an}是否為等差數(shù)列,并說明理由。

          四、小結與作業(yè)。

          師:接下來請同學們一起來小結本節(jié)課所講的內(nèi)容。

          生11:1、用倒序相加法推導等差數(shù)列前n項和公式。

          2、用所推導的兩個公式解決有關例題,熟悉對Sn公式的運用。

          生12:1、運用Sn公式要注意此等差數(shù)列的項數(shù)n的值。

          2、具體用Sn公式時,要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

          3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應用等差數(shù)列的有關性質(zhì),看能否用整體思想的方法求a1+an的值。

          師:通過以上幾例,說明在解題中靈活應用所學性質(zhì),要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發(fā)現(xiàn)更多的性質(zhì),主動積極地去學習。

          本節(jié)所滲透的數(shù)學方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。

          數(shù)學思想:類比思想、整體思想、方程思想、函數(shù)思想等。

        【高中數(shù)學說課稿:等差數(shù)列】相關文章:

        高中數(shù)學《等差數(shù)列》說課稿09-06

        高中數(shù)學說課稿:等差數(shù)列11-25

        高中數(shù)學等差數(shù)列說課稿(通用8篇)04-20

        《等差數(shù)列》說課稿07-22

        高中數(shù)學《等差數(shù)列前n項和的公式》說課稿12-11

        高中等差數(shù)列說課稿12-02

        高一數(shù)學《等差數(shù)列》說課稿12-11

        高中數(shù)學的說課稿11-04

        高一數(shù)學說課稿《等差數(shù)列》10-18

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>