1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數(shù)學(xué)說課稿

        時間:2021-08-15 19:26:38 高中說課稿 我要投稿

        實用的高中數(shù)學(xué)說課稿范文集合9篇

          作為一無名無私奉獻的教育工作者,往往需要進行說課稿編寫工作,認(rèn)真擬定說課稿,怎樣寫說課稿才更能起到其作用呢?以下是小編為大家收集的高中數(shù)學(xué)說課稿9篇,希望能夠幫助到大家。

        實用的高中數(shù)學(xué)說課稿范文集合9篇

        高中數(shù)學(xué)說課稿 篇1

          高中數(shù)學(xué)第三冊(選修)Ⅱ第一章第2節(jié)第一課時

          一、教材分析

          教材的地位和作用

          期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計知識做鋪墊。同時,它在市場預(yù)測,經(jīng)濟統(tǒng)計,風(fēng)險與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響。

          教學(xué)重點與難點

          重點:離散型隨機變量期望的概念及其實際含義。

          難點:離散型隨機變量期望的實際應(yīng)用。

          [理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對離散性隨機變量期望的概念的教學(xué)作為本節(jié)課的教學(xué)重點。此外,學(xué)生初次應(yīng)用概念解決實際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點。

          二、教學(xué)目標(biāo)

          [知識與技能目標(biāo)]

          通過實例,讓學(xué)生理解離散型隨機變量期望的概念,了解其實際含義。

          會計算簡單的離散型隨機變量的期望,并解決一些實際問題。

          [過程與方法目標(biāo)]

          經(jīng)歷概念的建構(gòu)這一過程,讓學(xué)生進一步體會從特殊到一般的思想,培養(yǎng)學(xué)生歸納、概括等合情推理能力。

          通過實際應(yīng)用,培養(yǎng)學(xué)生把實際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)學(xué)應(yīng)用意識。

          [情感與態(tài)度目標(biāo)]

          通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴(yán)謹(jǐn)治學(xué)的態(tài)度。在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。

          三、教法選擇

          引導(dǎo)發(fā)現(xiàn)法

          四、學(xué)法指導(dǎo)

          “授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。

          五、教學(xué)的基本流程設(shè)計

          高中數(shù)學(xué)第三冊《離散型隨機變量的期望》說課教案.rar

        高中數(shù)學(xué)說課稿 篇2

          一、教材分析

          1.《指數(shù)函數(shù)》在教材中的地位、作用和特點

          《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ),又因為《指數(shù)函數(shù)》是進入高中以后學(xué)生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。

          此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。

          2.教學(xué)目標(biāo)、重點和難點

          通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個方面:

          知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識,能夠從初中運動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認(rèn)識函數(shù)。

          技能維度:學(xué)生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。

          素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。

          鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點和難點如下:

          (1)知識目標(biāo):

         、僬莆罩笖(shù)函數(shù)的概念;

         、谡莆罩笖(shù)函數(shù)的圖象和性質(zhì);

          ③能初步利用指數(shù)函數(shù)的概念解決實際問題;

          (2)技能目標(biāo):

          ①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法

         、谂囵B(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;

          (3)情感目標(biāo):

          ①體驗從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題②通過教學(xué)互動促進師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力

          ③領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。

          (4)教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。

          (5)教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。

          突破難點的關(guān)鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。

          二、教法設(shè)計

          由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖通過這一節(jié)課的教學(xué)達到不僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識,將二者結(jié)合起來,主要突出了幾個方面:

          1.創(chuàng)設(shè)問題情景.按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。

          2.強化“指數(shù)函數(shù)”概念.引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。

          3.突出圖象的作用.在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。

          4.注意數(shù)學(xué)與生活和實踐的聯(lián)系.數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。

          三、學(xué)法指導(dǎo)

          本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運算后編排的,針對學(xué)生實際情況,我主要在以下幾個方面做了嘗試:

          1.再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個生活實例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。

          2.領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個高中的數(shù)學(xué)學(xué)習(xí)。

          3.在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的接受和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。

          4.注意學(xué)習(xí)過程的循序漸進。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進,讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設(shè)計將盡可能照顧到課堂學(xué)生的個體差異。

          四、程序設(shè)計

          在設(shè)計本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設(shè)計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認(rèn)識指數(shù)函數(shù)的圖象和性質(zhì)。

          1.創(chuàng)設(shè)情景、導(dǎo)入新課

          教師活動:

         、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細(xì)胞分裂的例子,

         、趯W(xué)生按奇數(shù)列、偶數(shù)列分組。

          學(xué)生活動:

         、俜謩e寫出計算機價格y與經(jīng)過月份x的關(guān)系式和細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系式,并互相交流;

         、诨貞浿笖(shù)的概念;

          ③歸納指數(shù)函數(shù)的概念;

         、芊治龀鰧χ笖(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。

          設(shè)計意圖:通過生活實例激發(fā)學(xué)生的學(xué)習(xí)動機,,掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性, 為突破難點做好準(zhǔn)備;

          2.啟發(fā)誘導(dǎo)、探求新知

          教師活動:

         、俳o出兩個簡單的指數(shù)函數(shù)并要求學(xué)生畫它們的圖象②在準(zhǔn)備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象③板書指數(shù)函數(shù)的性質(zhì)。

          學(xué)生活動:

         、佼嫵鰞蓚簡單的指數(shù)函數(shù)圖象

         、诮涣、討論

         、蹥w納出研究函數(shù)性質(zhì)涉及的方面

         、芸偨Y(jié)出指數(shù)函數(shù)的性質(zhì)。

          設(shè)計意圖:讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的內(nèi)容有著一定的促進作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標(biāo)系的小黑板展示準(zhǔn)確的作圖方法,達到進一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情況,學(xué)生就會很自然的通過觀察圖象總結(jié)出指數(shù)函數(shù)的性質(zhì),同時對于底數(shù)的討論也就變得順理成章。

          3.鞏固新知、反饋回授

          教師活動:

         、侔鍟1

          ②板書例2第一問

         、劢榻B有關(guān)考古的拓展知識。

        高中數(shù)學(xué)說課稿 篇3

          各位老師:

          今天我說課的題目是《輸入、輸出語句和賦值語句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計:

          一、教材分析

          1.教材所處的地位和作用

          我們用自然語言或程序框圖描述的算法,但是計算機是無法“看得懂,聽得見”的。因此還需要將算法用計算機能夠理解的程序設(shè)計語言翻譯成計算機程序。程序設(shè)計語言有很多種。為了實現(xiàn)算法中的三種基本的邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),各種程序設(shè)計語言中都包含下列基本的算法語句:輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.。而我們今天所要學(xué)習(xí)的是前三種算法語句,它們基本上是對應(yīng)于算法中的順序結(jié)構(gòu)的。

          2.教學(xué)的重點和難點

          重點:正確理解輸入語句、輸出語句、賦值語句的作用。

          難點:準(zhǔn)確寫出輸入語句、輸出語句、賦值語句。

          二、教學(xué)目標(biāo)分析

          1.知識與技能目標(biāo):

          (1)正確理解輸入語句、輸出語句、賦值語句的結(jié)構(gòu)。

         。2)會寫一些簡單的程序。

         。3)掌握賦值語句中的“=”的作用。

          2.過程與方法目標(biāo):

          (1)讓學(xué)生充分地感知、體驗應(yīng)用計算機解決數(shù)學(xué)問題的方法;并能初步操作、模仿。

         。2)通過模仿,操作,探索的過程,體會算法的基本思想和基本語句的用途,提高學(xué)生應(yīng)用數(shù)學(xué)軟件的能力.

          3.情感,態(tài)度和價值觀目標(biāo)

          (1) 通過對三種語句的了解和實現(xiàn),發(fā)展有條理的思考,表達的能力,提高邏輯思維能力.

          (2) 學(xué)習(xí)算法語句,幫助學(xué)生利用計算機軟件實現(xiàn)算法,活躍思維,提高學(xué)生的數(shù)學(xué)素養(yǎng).

          (3) 結(jié)合計算機軟件的應(yīng)用, 增強應(yīng)用數(shù)學(xué)的意識,在計算機上實現(xiàn)算法讓學(xué)生體會成功喜悅.

          三、教學(xué)方法與手段分析

          1.教學(xué)方法:引導(dǎo)與合作交流相結(jié)合,學(xué)生在體會三種語句結(jié)構(gòu)格式的過程中,讓學(xué)生積極參與,討論交流,充分挖掘三種算法語句的格式特點及意義,在分析具體問題的過程中總結(jié)三種算法語句的思想與特征.

          2.教學(xué)手段:運用計算機、圖形計算器輔助教學(xué)

          四、教學(xué)過程分析

          1. 創(chuàng)設(shè)情境(約5分鐘)

          在課的開始,我要求學(xué)生們舉出一些在日常生活中所應(yīng)用到的有關(guān)計算機的例子,如:聽MP3,看電影,玩游戲,打字排版,畫卡通畫,處理數(shù)據(jù)等等,并告訴他們在現(xiàn)代社會里,計算機已經(jīng)成為人們?nèi)粘I詈凸ぷ鞑豢扇鄙俚墓ぞ撸缓蠼又鴨査麄冎恢烙嬎銠C到底是怎樣工作的?通過這個問題引出我們今天所要學(xué)習(xí)的內(nèi)容。(板出課題)

          在這個過程中,我讓學(xué)生們將課本學(xué)習(xí)的內(nèi)容與現(xiàn)實生活聯(lián)系在了一起,這樣能夠激起他們對接下來的所要學(xué)習(xí)內(nèi)容的興趣,為整節(jié)課的學(xué)習(xí)打下一個良好的基礎(chǔ)。

          2.探究新知(約15分鐘)

          這里我先給出一個題目:用描點法作出函數(shù)

          的圖象,用描點法作函數(shù)的圖象時,需要先求出自變量與函數(shù)的對應(yīng)值。編寫程序,分別計算當(dāng)

          時的函數(shù)值。(程序由我在課前準(zhǔn)備好,教學(xué)中直接調(diào)用運行)

          程序:INPUT“x=”;x 輸入語句

          y=x^3+3*x^2-24*x+30 賦值語句

          PRINT x 輸出語句

          PRINT y 輸出語句

          END

         。▽W(xué)生們先看,再跟著做,先不必深究該程序如何得來,只要模仿編寫程序,通過運行自己編寫的程序發(fā)現(xiàn)問題所在,進一步提高學(xué)生的模仿能力)

          之后,我向?qū)W生們提問:在這個程序中,他們覺得哪些是輸入語句、輸出語句和賦值語句?(同學(xué)們互相交流、議論、猜想、概括出結(jié)論。提示:“input”和“print”的中文意思,還要請學(xué)生們注意到在賦值語句中的賦值號“=”與數(shù)學(xué)中的等號意義不同。)

          此過程由老師引導(dǎo),學(xué)生們自己討論并總結(jié)出什么是輸入語句、輸出語句和賦值語句,這樣比老師直接地將知識傳授給他們,學(xué)習(xí)的效果更佳,同時也鍛煉了學(xué)生們思考問題的能力和概括能力,激發(fā)學(xué)習(xí)興趣。

          然后給出一個思考題:在1.1.2中程序框圖中的輸入框,輸出框的內(nèi)容怎樣用輸入語句、輸出語句來表達?(學(xué)生討論、交流想法,然后請學(xué)生作答)這樣可以及時應(yīng)用剛剛學(xué)習(xí)的內(nèi)容,并可以將前后所學(xué)知識聯(lián)系起來。

          3.例題精析(約12分鐘)

          在本環(huán)節(jié)中我為學(xué)生們準(zhǔn)備了三道例題,這三道例題均選自課本的例2、例3和例4,學(xué)生通過這幾道例題的講解,結(jié)合計算機程序上機運用,可以掌握在程序設(shè)計語言中的前三種算法語句,體會到他們在程序中的意義和作用。

          4.課堂精練(約4分鐘)

          P15 練習(xí) 1.

          提問:如果要求輸入一個攝氏溫度,輸出其相應(yīng)的華氏溫度,又該如何設(shè)計程序?(學(xué)生課后思考,討論完成)通過提問啟發(fā)學(xué)生們思考,發(fā)散思維。

          5.課堂小結(jié)(約5分鐘)

         、泡斎胝Z句、輸出語句和賦值語句的結(jié)構(gòu)特點及聯(lián)系

         、茟(yīng)用輸入語句,輸出語句,賦值語句編寫一些簡單的程序解決數(shù)學(xué)問題

         、 賦值語句中“=”的作用及應(yīng)用

         、染幊桃话愕牟襟E:先寫出算法,再進行編程。

          6.布置作業(yè)

          P23 習(xí)題1.2 A組 1(2)、2

          [設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。

          7.板書設(shè)計

        高中數(shù)學(xué)說課稿 篇4

          【一】教學(xué)背景分析

          1.教材結(jié)構(gòu)分析

          《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用.

          2.學(xué)情分析

          圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難.另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強.

          根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

          3.教學(xué)目標(biāo)

          (1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;

         、跁蓤A的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

         、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實際問題.

          (2) 能力目標(biāo):①進一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

         、诩由顚(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;

         、墼鰪妼W(xué)生用數(shù)學(xué)的意識.

          (3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;

         、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

          根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點:

          4. 教學(xué)重點與難點

          (1)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

          (2)難點: ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

          ②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.

          為使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進行分析:

          好學(xué)教育:

          【二】教法學(xué)法分析

          1.教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程.

          2.學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解.通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程. 下面我就對具體的教學(xué)過程和設(shè)計加以說明:

          【三】教學(xué)過程與設(shè)計

          整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

          創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

          反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

          下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖.

          首先:縱向敘述教學(xué)過程

          (一)創(chuàng)設(shè)情境——啟迪思維

          問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

          通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進入了本課的主題.用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

          通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié).

          (二)深入探究——獲得新知

          問題二 1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

          2.如果圓心在,半徑為時又如何呢?

          好學(xué)教育:

          這一環(huán)節(jié)我首先讓學(xué)生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對圓心不在原點的情況進行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法.

          得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié).

          (三)應(yīng)用舉例——鞏固提高

          I.直接應(yīng)用 內(nèi)化新知

          問題三 1.寫出下列各圓的標(biāo)準(zhǔn)方程:

          (1)圓心在原點,半徑為3;

          (2)經(jīng)過點,圓心在點.

          2.寫出圓的圓心坐標(biāo)和半徑.

          我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備.

          II.靈活應(yīng)用 提升能力

          問題四 1.求以點為圓心,并且和直線相切的圓的方程.

          2.求過點,圓心在直線上且與軸相切的圓的方程.

          3.已知圓的方程為,求過圓上一點的切線方程.

          你能歸納出具有一般性的結(jié)論嗎?

          已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

          我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程.第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮.

          III.實際應(yīng)用 回歸自然

          問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

          好學(xué)教育:

          我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識.

          (四)反饋訓(xùn)練——形成方法

          問題六 1.求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程.

          2.求圓過點的切線方程.

          3.求圓過點的切線方程.

          接下來是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的.樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果.

          (五)小結(jié)反思——拓展引申

          1.課堂小結(jié)

          把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

          圓心在原點時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:.

         、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:.

          2.分層作業(yè)

          (A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程.

          3.激發(fā)新疑

          問題七 1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

          2.方程表示什么圖形?

          在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備.

          以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學(xué)設(shè)計: 橫向闡述教學(xué)設(shè)計

          (一)突出重點 抓住關(guān)鍵 突破難點

          好學(xué)教育:

          求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點.

          第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五.這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破.

          (二)學(xué)生主體 教師主導(dǎo) 探究主線

          本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).

          (三)培養(yǎng)思維 提升能力 激勵創(chuàng)新

          為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.

          以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”.

        高中數(shù)學(xué)說課稿 篇5

          一、教材分析

          1、教材的地位和作用:

          函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的思想貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進一步研究指數(shù)函數(shù)及指數(shù)函數(shù)的圖像和性質(zhì),同時也為今后研究對數(shù)函數(shù)及其性質(zhì)打下堅實的基礎(chǔ)。因此本節(jié)課內(nèi)容十分重要,它對知識起著承上啟下的作用。

          2、教學(xué)的重點和難點:

          根據(jù)這節(jié)課的內(nèi)容特點及學(xué)生的實際情況,我將本節(jié)課教學(xué)重點定為指數(shù)函數(shù)的圖像、性質(zhì)及應(yīng)用,難點定為指數(shù)函數(shù)性質(zhì)的發(fā)現(xiàn)過程及指數(shù)函數(shù)與底的關(guān)系。

          二、教學(xué)目標(biāo)分析

          基于對教材的理解和分析,我制定了以下教學(xué)目標(biāo):

          1、理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)圖像、性質(zhì)及其簡單應(yīng)用。

          2、通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合思想和分類討論思想,增強學(xué)生識圖用圖的能力。

          3、培養(yǎng)學(xué)生對知識的嚴(yán)謹(jǐn)科學(xué)態(tài)度和辯證唯物主義觀點。

          三、教法學(xué)法分析

          1、學(xué)情分析

          教學(xué)對象是剛進入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也逐步形成,但由于年齡的原因,思維盡管活躍敏捷,卻缺乏冷靜深刻。因此思考問題片面不嚴(yán)謹(jǐn)。

          2、教法分析:基于以上學(xué)情分析,我采用先學(xué)生討論,再教師講授教學(xué)方法。一方面培養(yǎng)學(xué)生的觀察、分析、歸納等思維能力。另一方面用教師的講授來糾正由于學(xué)生思維過分活躍而走入的誤區(qū),和彌補知識的不足,達到能力與知識的雙重效果。

          3、學(xué)法分析

          讓學(xué)生仔細(xì)觀察書中給出的實際例子,使他們發(fā)現(xiàn)指數(shù)函數(shù)與現(xiàn)實生活息息相關(guān)。再根據(jù)高一學(xué)生愛動腦懶動手的特點,讓學(xué)生自己描點畫圖,畫出指數(shù)函數(shù)的圖像,繼而用自己的語言總結(jié)指數(shù)函數(shù)的性質(zhì),學(xué)生經(jīng)歷了探究的過程,培養(yǎng)探究能力和抽象概括的能力。

          四、教學(xué)過程

          (一)創(chuàng)設(shè)情景

          問題1:某種細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,……一個這樣的細(xì)胞分裂 次后,得到的細(xì)胞分裂的個數(shù) 與 之間,構(gòu)成一個函數(shù)關(guān)系,能寫出 與 之間的函數(shù)關(guān)系式嗎?

          學(xué)生回答: 與 之間的關(guān)系式,可以表示為 。

          問題2:折紙問題:讓學(xué)生動手折紙

          學(xué)生回答:①對折的次數(shù) 與所得的層數(shù) 之間的關(guān)系,得出結(jié)論

         、趯φ鄣拇螖(shù) 與折后面積 之間的關(guān)系(記折前紙張面積為1),得出結(jié)論

          問題3:《莊子。天下篇》中寫到“一尺之棰,日取其半,萬世不竭”。

          學(xué)生回答:寫出取 次后,木棰的剩留量與 與 的函數(shù)關(guān)系式。

          設(shè)計意圖:

          (1)讓學(xué)生在問題的情景中發(fā)現(xiàn)問題,遇到挑戰(zhàn),激發(fā)斗志,又引導(dǎo)學(xué)生在簡單的具體問題中抽象出共性,體驗從簡單到復(fù)雜,從特殊到一般的認(rèn)知規(guī)律。從而引入兩種常見的指數(shù)函數(shù)① ②

          (2)讓學(xué)生感受我們生活中存在這樣的指數(shù)函數(shù)模型,便于學(xué)生接

          受指數(shù)函數(shù)的形式。

          (二)導(dǎo)入新課

          引導(dǎo)學(xué)生觀察,三個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。

          設(shè)計意圖:充實實例,突出底數(shù)a的取值范圍,讓學(xué)生體會到數(shù)學(xué)來源于生產(chǎn)生活實際。函數(shù) 分別以 的數(shù)為底,加深對定義的感性認(rèn)識,為順利引出指數(shù)函數(shù)定義作鋪墊。

          (三)新課講授

          1.指數(shù)函數(shù)的定義

          一般地,函數(shù) 叫做指數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是R。

          含義:

          設(shè)計意圖:為 按兩種情況得出指數(shù)函數(shù)性質(zhì)作鋪墊。若學(xué)生回答不合適,引導(dǎo)學(xué)生用區(qū)間表示:

          問題:指數(shù)函數(shù)定義中,為什么規(guī)定“ ”如果不這樣規(guī)定會出現(xiàn)什么情況?

          設(shè)計意圖:教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?這是本節(jié)的一個難點,為突破難點,采取學(xué)生自由討論的形式,達到互相啟發(fā),補充,活躍氣氛,激發(fā)興趣的目的。

          對于底數(shù)的分類,可將問題分解為:

          (1)若 會有什么問題?(如 ,則在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在)

          (2)若 會有什么問題?(對于 , 都無意義)

          (3)若 又會怎么樣?( 無論 取何值,它總是1,對它沒有研究的必要.)

          師:為了避免上述各種情況的發(fā)生,所以規(guī)定 。

          在這里要注意生生之間、師生之間的對話。

          設(shè)計意圖:認(rèn)識清楚底數(shù)a的特殊規(guī)定,才能深刻理解指數(shù)函數(shù)的定義域是R;并為學(xué)習(xí)對數(shù)函數(shù),認(rèn)識指數(shù)與對數(shù)函數(shù)關(guān)系打基礎(chǔ)。

          教師還要提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,必須在形式上一模一樣才行,然后把問題引向深入。

          1:指出下列函數(shù)那些是指數(shù)函數(shù):

          2:若函數(shù) 是指數(shù)函數(shù),則

          3:已知 是指數(shù)函數(shù),且 ,求函數(shù) 的解析式。

          設(shè)計意圖 :加深學(xué)生對指數(shù)函數(shù)定義和呈現(xiàn)形式的理解。

          2.指數(shù)函數(shù)的圖像及性質(zhì)

          在同一平面直角坐標(biāo)系內(nèi)畫出下列指數(shù)函數(shù)的圖象

          畫函數(shù)圖象的步驟:列表、描點、連線

          思考如何列表取值?

          教師與學(xué)生共同作出 圖像。

          設(shè)計意圖:在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖像與性質(zhì),是本節(jié)的重點。關(guān)鍵在于弄清底數(shù)a對于函數(shù)值變化的影響。對于 時函數(shù)值變化的不同情況,學(xué)生往往容易混淆,這是教學(xué)中的一個難點。為此,必須利用圖像,數(shù)形結(jié)合。教師親自板演,學(xué)生親自在課前準(zhǔn)備好的坐標(biāo)系里畫圖,而不是采用幾何畫板直接得到圖像,目的是使學(xué)生更加信服,加深印象,并為以后畫圖解題,采用數(shù)形結(jié)合思想方法打下基礎(chǔ)。

          利用幾何畫板演示函數(shù) 的圖象,觀察分析圖像的共同特征。由特殊到一般,得出指數(shù)函數(shù) 的圖象特征,進一步得出圖象性質(zhì):

          教師組織學(xué)生結(jié)合圖像討論指數(shù)函數(shù)的性質(zhì)。

          設(shè)計意圖:這是本節(jié)課的重點和難點,要充分調(diào)動學(xué)生的積極性、主動性,發(fā)揮他們的潛能,盡量由學(xué)生自主得出性質(zhì),以便能夠更深刻的記憶、更熟練的運用。

          師生共同總結(jié)指數(shù)函數(shù)的性質(zhì),教師邊總結(jié)邊板書。

          特別地,函數(shù)值的分布情況如下:

          設(shè)計意圖:再次強調(diào)指數(shù)函數(shù)的單調(diào)性與底數(shù)a的關(guān)系,并具體分析了函數(shù)值的分布情況,深刻理解指數(shù)函數(shù)值域情況。

          (四)鞏固與練習(xí)

          例1: 比較下列各題中兩值的大小

          教師引導(dǎo)學(xué)生觀察這些指數(shù)值的特征,思考比較大小的方法。

          (1)(2)兩題底相同,指數(shù)不同,(3)(4)兩題可化為同底的,可以利用函數(shù)的單調(diào)性比較大小。

          (5)題底不同,指數(shù)相同,可以利用函數(shù)的圖像比較大小。

          (6)題底不同,指數(shù)也不同,可以借助中介值比較大小。

          例2:已知下列不等式 , 比較 的大小 :

          設(shè)計意圖:這是指數(shù)函數(shù)性質(zhì)的簡單應(yīng)用,使學(xué)生在解題過程中加深對指數(shù)函數(shù)的圖像及性質(zhì)的理解和記憶。

          (五)課堂小結(jié)

          通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?

          你又掌握了哪些數(shù)學(xué)思想方法?

          你能將指數(shù)函數(shù)的學(xué)習(xí)與實際生活聯(lián)系起來嗎?

          設(shè)計意圖:讓學(xué)生在小結(jié)中明確本節(jié)課的學(xué)習(xí)內(nèi)容,強化本節(jié)課的學(xué)習(xí)重點,并為后續(xù)學(xué)習(xí)打下基礎(chǔ)。

          (六)布置作業(yè)

          1、練習(xí)B組第2題;習(xí)題3-1A組第3題

          2、A先生從今天開始每天給你10萬元,而你承擔(dān)如下任務(wù):第一天給A先生1元,第二天給A先生2元,,第三天給A先生4元,第四天給A先生8元,依次下去,…,A先生要和你簽定15天的合同,你同意嗎?又A先生要和你簽定30天的合同,你能簽這個合同嗎?

          3、觀察指數(shù)函數(shù) 的圖象,比較 的大小。

        高中數(shù)學(xué)說課稿 篇6

          一、說教材

          1.從在教材中的地位與作用來看

          《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).

          2.從學(xué)生認(rèn)知角度看

          從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應(yīng)因勢利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯.

          3.學(xué)情分析

          教學(xué)對象是剛進入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).

          4.重點、難點

          教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用.

          教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用.

          公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點.

          二、說目標(biāo)

          知識與技能目標(biāo):

          理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題.

          過程與方法目標(biāo):

          通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

          情感與態(tài)度價值觀:

          通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點.

          三、說過程

          學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:

          1.創(chuàng)設(shè)情境,提出問題

          在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚.為什么呢?

          設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點.

          此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥?倲(shù).帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.

          設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆.

          2.師生互動,探究問題

          在肯定他們的思路后,我接著問:1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?

          探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)

          探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

          設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機.

          經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

          設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.

          3.類比聯(lián)想,解決問題

          這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,

          這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進行指導(dǎo).

          設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感.

          對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ).)

          再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)

          設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.

          4.討論交流,延伸拓展

        高中數(shù)學(xué)說課稿 篇7

          一、教材分析

         。ㄒ唬┑匚慌c作用

          《冪函數(shù)》選自高一數(shù)學(xué)新教材必修1第2章第3節(jié)。是基本初等函數(shù)之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。從教材的整體安排看,學(xué)習(xí)了解冪函數(shù)是為了讓學(xué)生進一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,為今后學(xué)習(xí)三角函數(shù)等其他函數(shù)打下良好的基礎(chǔ).在初中曾經(jīng)研究過y=x,y=x2,y=x—1三種冪函數(shù)。這節(jié)內(nèi)容,是對初中有關(guān)內(nèi)容的進一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節(jié)內(nèi)容之后, 將把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)科學(xué)的組織起來,體現(xiàn)充滿在整個數(shù)學(xué)中的組織化,系統(tǒng)化的精神。讓學(xué)生了解系統(tǒng)研究一類函數(shù)的方法.這節(jié)課要特別讓學(xué)生去體會研究的方法,以便能將該方法遷移到對其他函數(shù)的研究.

         。ǘ⿲W(xué)情分析

         。1)學(xué)生已經(jīng)接觸的函數(shù),確立利用函數(shù)的定義域、值域、奇偶性、單調(diào)性研究一個函數(shù)的意識 ,已初步形成對數(shù)學(xué)問題的合作探究能力。

          (2)雖然前面學(xué)生已經(jīng)學(xué)會用描點畫圖的方法來繪制指數(shù)函數(shù),對數(shù)函數(shù)圖像,但是對于冪函數(shù)的圖像畫法仍然缺乏感性認(rèn)識。

         。3)學(xué)生層次參差不齊,個體差異比較明顯。

          二、目標(biāo)分析

          新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機整體。

         。ㄒ唬┙虒W(xué)目標(biāo)

         。1)知識與技能

         、偈箤W(xué)生理解冪函數(shù)的概念,會畫冪函數(shù)的圖象。

         、谧寣W(xué)生結(jié)合這幾個冪函數(shù)的圖象,理解冪函圖象的變化情況和性質(zhì)。

         。2)過程與方法

         、僮寣W(xué)生通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力。

          ②使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

         。3)情感態(tài)度與價值觀

         、偻ㄟ^熟悉的例子讓學(xué)生消除對冪函數(shù)的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。

          ②利用多媒體,了解冪函數(shù)圖象的變化規(guī)律,使學(xué)生認(rèn)識到現(xiàn)代技術(shù)在數(shù)學(xué)認(rèn)知過程中的作用,從而激發(fā)學(xué)生的學(xué)習(xí)欲望。

          ③培養(yǎng)學(xué)生從特殊歸納出一般的意識,培養(yǎng)學(xué)生利用圖像研究函數(shù)奇偶性的能力。并引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對稱美,讓學(xué)生在畫圖與識圖中獲得學(xué)習(xí)的快樂。

          (二)重點難點

          根據(jù)我對本節(jié)課的內(nèi)容的理解,我將重難點定為:

          重點:從五個具體的冪函數(shù)中認(rèn)識概念和性質(zhì)

          難點:從冪函數(shù)的圖象中概括其性質(zhì)。

          三、教法、學(xué)法分析

         。ㄒ唬┙谭

          教學(xué)過程是教師和學(xué)生共同參與的過程,教師要善于啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性,要有效地滲透數(shù)學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法。

          1、引導(dǎo)發(fā)現(xiàn)比較法

          因為有五個冪函數(shù),所以可先通過學(xué)生動手畫出函數(shù)的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發(fā)現(xiàn)異同,并進行比較,從而更深刻地領(lǐng)會冪函數(shù)概念以及五個冪函數(shù)的圖象與性質(zhì)。

          2、借助信息技術(shù)輔助教學(xué)

          由于多媒體信息技術(shù)能具有形象生動易吸引學(xué)生注意的特點,故此,可用多媒體制作引入情境,將學(xué)生引到這節(jié)課的學(xué)習(xí)中來。再利用《幾何畫板》畫出五個冪函數(shù)的圖象,為學(xué)生創(chuàng)設(shè)豐富的數(shù)形結(jié)合環(huán)境,幫助學(xué)生更深刻地理解冪函數(shù)概念以及在冪函數(shù)中指數(shù)的變化對函數(shù)圖象形狀和單調(diào)性的影響,并由此歸納冪函數(shù)的性質(zhì)。

          3、練習(xí)鞏固討論學(xué)習(xí)法

          這樣更能突出重點,解決難點,使學(xué)生既能夠進行深入地獨立思考又能與同學(xué)進行廣泛的交流與合作,這樣一來學(xué)生對這五個冪函數(shù)領(lǐng)會得會更加深刻,在這個過程中學(xué)生們分析問題和解決問題的能力得到進一步的提高,班級整體學(xué)習(xí)氛氛圍也變得更加濃厚。

          (二)學(xué)法

          本節(jié)課主要是通過對冪函數(shù)模型的特征進行歸納,動手探索冪函數(shù)的圖像,觀察發(fā)現(xiàn)其有關(guān)性質(zhì),再改變觀察角度發(fā)現(xiàn)奇偶函數(shù)的特征。重在動手操作、觀察發(fā)現(xiàn)和歸納的過程。

          由于冪函數(shù)在第一象限的特征是學(xué)生不容易發(fā)現(xiàn)的問題,因此在教學(xué)過程中引導(dǎo)學(xué)生將抽象問題具體化,借助多媒體進行動態(tài)演化,以形成較完整的知識結(jié)構(gòu)。

          四、教學(xué)過程分析

         。ㄒ唬┙虒W(xué)過程設(shè)計

          (1)創(chuàng)設(shè)情境,提出問題。 新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。

          問題1:下列問題中的函數(shù)各有什么共同特征?是否為指數(shù)函數(shù)?

          由學(xué)生討論,總結(jié),即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

          這時學(xué)生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數(shù)值,上述函數(shù)式變成:

          都是自變量的若干次冪的形式。都是形如

          的函數(shù)。

          揭示課題:今天這節(jié)課,我們就來研究:冪函數(shù)

          (一)課堂主要內(nèi)容

         。1)冪函數(shù)的概念

          ①冪函數(shù)的定義。

          一般地,函數(shù)

          叫做冪函數(shù),其中x 是自變量,a是常數(shù)。

         、趦绾瘮(shù)與指數(shù)函數(shù)之間的區(qū)別。

          冪函數(shù)——底數(shù)是自變量,指數(shù)是常數(shù);

          指數(shù)函數(shù)——指數(shù)是自變量,底數(shù)是常數(shù)。

         。2)幾個常見冪函數(shù)的圖象和性質(zhì)

          由同學(xué)們畫出下列常見的冪函數(shù)的圖象,并根據(jù)圖象將發(fā)現(xiàn)的性質(zhì)填入表格

          根據(jù)上表的內(nèi)容并結(jié)合圖象,總結(jié)函數(shù)的共同性質(zhì)。讓學(xué)生交流,老師結(jié)合學(xué)生的回答組織學(xué)生總結(jié)出性質(zhì)。

          以上問題的設(shè)計意圖:數(shù)形結(jié)合是一個重要的數(shù)學(xué)思想方法,它包含以數(shù)助形,和以形助數(shù)的思想。通過問題設(shè)計讓學(xué)生著手實際,借助行的生動來闡明冪函數(shù)的性質(zhì)。

          教師講評:冪函數(shù)的性質(zhì).

         、偎械膬绾瘮(shù)在(0,+∞)上都有定義,并且圖像都過點(1,1).

         、谌绻鸻>0,則冪函數(shù)的圖像通過原點,并在區(qū)間〔0,+∞)上是增函數(shù).

          ③如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內(nèi),當(dāng)x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞時,圖像在x軸上方無限地趨近x軸.

         、墚(dāng)a為奇數(shù)時,冪函數(shù)為奇函數(shù);當(dāng)a為偶數(shù)時,冪函數(shù)為偶函數(shù)。

          以問題設(shè)計為主,通過問題,讓學(xué)生由已經(jīng)學(xué)過的指數(shù)函數(shù),對數(shù)函數(shù),描點作圖得到五個冪函數(shù)的圖像,但是我們應(yīng)該知道繪制冪函數(shù)的圖像比繪制指數(shù)函數(shù)和對數(shù)函數(shù)的圖像更為復(fù)雜,因為冪函數(shù)隨著冪指數(shù)的輕微變化會出現(xiàn)較大的變化,因此,在描點作圖之前,應(yīng)引導(dǎo)學(xué)生對幾個特殊的冪函數(shù)的性質(zhì)先進行初步的探究,如分析函數(shù)的定義域,奇偶性等,在根據(jù)研究結(jié)果和描點作圖畫出圖像,讓學(xué)生觀察所作圖像特征,并由圖象特征得到相應(yīng)的函數(shù)性質(zhì),讓學(xué)生充分體會系統(tǒng)的研究方法。同時學(xué)生對于歸納性質(zhì)這一環(huán)節(jié)相對指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì),學(xué)生會有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進行認(rèn)識,而不必在一般冪函數(shù)上作過多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。

          通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。

         。3)當(dāng)堂訓(xùn)練,鞏固深化

          例題和練習(xí)題的選取應(yīng)結(jié)合學(xué)生認(rèn)知探究,鞏固本節(jié)課的重點知識,并能用知識加以運用。本節(jié)課選取主要選取了兩道例題。

          例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數(shù)。這題先從“形”的角度判斷函數(shù)的單調(diào)區(qū)間和單調(diào)性,再用到定義從“數(shù)”的角度對函數(shù)的單調(diào)性進行推理論證,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想和解決問題的專業(yè)素養(yǎng)。

          例2是補充例題,主要培養(yǎng)學(xué)生根據(jù)體例構(gòu)造出函數(shù),并利用函數(shù)的性質(zhì)來解決問題的能力,從而加深學(xué)生對冪函數(shù)及其性質(zhì)的理解。注意:由于學(xué)生對冪函數(shù)還不是很熟悉,所以在講評中要刻意體現(xiàn)出冪函數(shù)y=x1。3是增函數(shù)與y=x—5/4的圖像的畫法,即再一次讓學(xué)生體會根據(jù)解析式來畫圖像解題這一基本思路

         。4)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。我設(shè)計了三個問題:

         。1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?

          (2)通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么?

          (3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

          (二)作業(yè)設(shè)計 作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成. 我設(shè)計了以下作業(yè):

          (1)必做題

         。2)選做題

         。ㄈ┌鍟O(shè)計

          板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。

          五、評價分析

          學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對冪函數(shù)是否有一個完整的集訓(xùn),并進行及時的調(diào)整和補充。 以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。

          謝謝!

        高中數(shù)學(xué)說課稿 篇8

        各位同仁,各位專家:

          我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學(xué)》第四冊 第1。2節(jié)

          先對教材進行分析

          教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

          地位和作用: 任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個內(nèi)容要認(rèn)真探討教材,精心設(shè)計過程。

          教學(xué)重點:任意角三角函數(shù)的定義

          教學(xué)難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺?biāo)系下用坐標(biāo)比值定義的觀念的轉(zhuǎn)換以及坐標(biāo)定義的合理性的理解;

          學(xué)情分析:

          學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力

          1。初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

          2。我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。

          3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導(dǎo)下才能進行

          針對對教材內(nèi)容重難點的和學(xué)生實際情況的分析我們制定教學(xué)目標(biāo)如下

          知識目標(biāo):

          (1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,

          能力目標(biāo):

         。1)理解并掌握任意角的三角函數(shù)的定義;

         。2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

          (3)通過對定義域,三角函數(shù)值的符號的推導(dǎo),提高學(xué)生分析探究解決問題的能力。

          德育目標(biāo):

         。1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;

          針對學(xué)生實際情況為達到教學(xué)目標(biāo)須精心設(shè)計教學(xué)方法

          教法學(xué)法:溫故知新,逐步拓展

         。1)在復(fù)習(xí)初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴展內(nèi)容,發(fā)展新知識,形成新的概念;

         。2)通過例題講解分析,逐步引出新知識,完善三角定義

          運用多媒體工具

         。1)提高直觀性增強趣味性。

          教學(xué)過程分析

          總體來說, 由舊及新,由易及難,

          逐步加強,逐步推進

          先由初中的直角三角形中銳角三角函數(shù)的定義

          過度到直角坐標(biāo)系中銳角三角函數(shù)的定義

          再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義

          給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

          具體教學(xué)過程安排

          引入: 復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

          由學(xué)生回答

          SinA=對邊/斜邊=BC/AB

          cosA=對邊/斜邊=AC/AB

          tanA=對邊/斜邊=BC/AC

          逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系, 把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。

          我們知道,隨著角的概念的推廣,研究角時多放在直角坐標(biāo)系里, 那么三角函數(shù)的定義能否也放到坐標(biāo)系去研究呢?

          引導(dǎo)學(xué)生發(fā)現(xiàn)B的坐標(biāo)和邊長的關(guān)系。進一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導(dǎo)致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標(biāo)來表示, 從而銳角三角函數(shù)可以使用直角坐標(biāo)系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標(biāo)中進行合理進行定義了

          從而得到

          知識點一:任意一個角的三角函數(shù)的定義

          提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關(guān)。

          精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義

          例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值

         。ù祟}由學(xué)生自己分析獨立動手完成)

          例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值

          結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當(dāng)初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

          提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

          從而引出函數(shù)極其定義域

          由學(xué)生分析討論,得出結(jié)論

          知識點二:三個三角函數(shù)的定義域

          同時教師強調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)

          例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值

          解答中需要對變量的正負(fù)即角所在象限進行討論, 讓學(xué)生意識到三角函數(shù)值的正負(fù)與角所在象限有關(guān),從而導(dǎo)出第三個知識點

          知識點三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系

          由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶

          例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

          求cosA,tanA

          綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)

          拓展,如果不限制A的象限呢,可以留作課外探討

          小結(jié)回顧課堂內(nèi)容

          課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解

          課堂作業(yè)P16 1,2,4

         。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)

          課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)

          必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

          板書設(shè)計(見PPT)

        高中數(shù)學(xué)說課稿 篇9

          1. 教材分析

          1-1教學(xué)內(nèi)容及包含的知識點

          (1) 本課內(nèi)容是高中數(shù)學(xué)第二冊第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個內(nèi)容。

          (2) 包含知識點:點到直線的距離公式和兩平行線的距離公式。

          1-2教材所處地位、作用和前后聯(lián)系

          本節(jié)課是兩條直線位置關(guān)系的最后一個內(nèi)容,在此之前,有對兩線位置關(guān)系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節(jié)既是對前面兩線垂直、兩線交點的復(fù)習(xí),又是為后面計算點線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。

          可見,本課有承前啟后的作用。

          1-3教學(xué)大綱要求

          掌握點到直線的距離公式

          1-4高考大綱要求及在高考中的顯示形式

          掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對值,直線垂直,最小值等。

          1-5教學(xué)目標(biāo)及確定依據(jù)

          教學(xué)目標(biāo)

          (1) 掌握點到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來求點線距離和線線距離。

          (2) 培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。

          (3) 認(rèn)識事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識的能力。

          (4) 滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。

          確定依據(jù):

          中華人民共和國教育部制定的《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說明》(20xx年)

          1-6教學(xué)重點、難點、關(guān)鍵

          (1) 重點:點到直線的距離公式

          確定依據(jù):由本節(jié)在教材中的地位確定

          (2) 難點:點到直線的距離公式的推導(dǎo)

          確定依據(jù):根據(jù)定義進行推導(dǎo),思路自然,但運算繁瑣;用等積法推導(dǎo),運算較簡單,但思路不自然,學(xué)生易被動,主體性得不到體現(xiàn)。

          分析“嘗試性題組”解題思路可突破難點

          (3)關(guān)鍵:實現(xiàn)兩個轉(zhuǎn)化。一是將點線距離轉(zhuǎn)化為定點到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點的距離。

          2.教法

          2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。

          確定依據(jù):

          (1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動學(xué)習(xí)原則,最佳動機原則,階段漸進性原則。

          (2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。

          2-2教具:多媒體和黑板等傳統(tǒng)教具

          3. 學(xué)法

          3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動,學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運用所得理論和方法去解決問題。

          一句話:還課堂以生命力,還學(xué)生以活力。

          3-2學(xué)情:

          (1)知識能力狀況,本節(jié)為兩線位置關(guān)系的最后一個內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對兩線位置關(guān)系的定性認(rèn)識和對兩線相交的定量認(rèn)識,為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學(xué)生對解析幾何的實質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識,數(shù)形結(jié)合的思想正逐漸趨于成熟。

          (2)心理特點:又見“點到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。

          (3)生活經(jīng)驗:數(shù)學(xué)源于生活,生活中的點線距隨處可見,怎樣將實際問題數(shù)學(xué)化,是每個追求成長、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動能夠讓他們真正參與,體驗過程,錘煉意志,培養(yǎng)能力。

          3-3學(xué)具:直尺、三角板

          4. 教學(xué)評價

          學(xué)生完成反思性學(xué)習(xí)報告,書寫要求:

          (1) 整理知識結(jié)構(gòu)。

          (2) 總結(jié)所學(xué)到的基本知識,技能和數(shù)學(xué)思想方法。

          (3) 總結(jié)在學(xué)習(xí)過程中的經(jīng)驗,發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說明產(chǎn)生障礙的原因。

          (4) 談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。

          作用:

          (1) 通過反思使學(xué)生對所學(xué)知識系統(tǒng)化。反思的過程實際上是學(xué)生思維內(nèi)化,知識深化和認(rèn)知牢固化的一個心理活動過程。

          (2) 報告的寫作本身就是一種創(chuàng)造性活動。

          (3) 及時了解學(xué)生學(xué)習(xí)過程中的知識缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿意度和效果,以便作出及時調(diào)整,及時進行補償性教學(xué)。

          5. 板書設(shè)計

          (略)

          6. 教學(xué)的反思總結(jié)

          心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。

        【實用的高中數(shù)學(xué)說課稿范文集合9篇】相關(guān)文章:

        實用的高中數(shù)學(xué)說課稿范文集合八篇08-19

        實用的高中數(shù)學(xué)說課稿范文集合7篇08-18

        實用的高中數(shù)學(xué)說課稿范文集合6篇08-16

        實用的高中數(shù)學(xué)說課稿范文集合8篇08-16

        實用的高中數(shù)學(xué)說課稿范文集合10篇08-14

        實用的高中數(shù)學(xué)說課稿范文集合九篇06-26

        實用的高中數(shù)學(xué)說課稿范文7篇07-26

        實用的高中數(shù)學(xué)說課稿范文集合十篇08-20

        實用的高中數(shù)學(xué)說課稿范文合集5篇08-11

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>