關于高中數學說課稿模板匯編五篇
作為一名教學工作者,編寫說課稿是必不可少的,編寫說課稿助于積累教學經驗,不斷提高教學質量。那么說課稿應該怎么寫才合適呢?下面是小編幫大家整理的高中數學說課稿5篇,希望對大家有所幫助。
高中數學說課稿 篇1
一、教材分析
1、教材內容
本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》§2.1.3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用定義解決一些簡單問題.
2、教材所處地位、作用
函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質.通過對本節課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題.通過上述活動,加深對函數本質的認識.函數的單調性既是學生學過的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎.此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節教學過程中還滲透了探索發現、數形結合、歸納轉化等數學思想方法.
3、教學目標
。1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性
的方法;
(2)過程與方法:從實際生活問題出發,引導學生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力.
。3)情感態度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養學生直覺觀察、探索發現、科學論證的良好的數學思維品質.
4、重點與難點
教學重點(1)函數單調性的概念;
。2)運用函數單調性的定義判斷一些函數的單調性.
教學難點(1)函數單調性的知識形成;
。2)利用函數圖象、單調性的定義判斷和證明函數的單調性.
二、教法分析與學法指導
本節課是一節較為抽象的數學概念課,因此,教法上要注意:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主體參與的積極性.
2、在運用定義解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用.具體體現在設問、講評和規范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達.
4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性.
在學法上:
1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和解決問題的能力.
2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍.
三、 教學過程
教學 環節 | 教 學 過 程 | 設 計 意 圖 |
問題 情境 | (播放中央電視臺天氣預報的音樂) 滿足在定義域上的單調性的討論. 2、重視學生發現的過程.如:充分暴露學生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學生認知結構升華、發現的過程. 3、重視學生的動手實踐過程.通過對定義的解讀、鞏固,讓學生動手去實踐運用定義. 4、重視課堂問題的設計.通過對問題的設計,引導學生解決問題. |
高中數學說課稿 篇2
一、背景分析
1、學習任務分析:充要條件是中學數學中最重要的數學概念之一,它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數學學習特別是數學推理的學習打下基礎。
教學重點:充分條件、必要條件和充要條件三個概念的定義。
2、學生情況分析:從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.因此,新教材在第一章的小結與復習中,把學生的學習要求規定為“初步掌握充要條件”(注意:新教學大綱的教學目標是“掌握充要條件的意義”),這是比較切合教學實際的.由此可見,教師在充要條件這一內容的新授教學時,不可拔高要求追求一步到位,而要在今后的教學中滾動式逐步深化,使之與學生的知識結構同步發展完善。
教學難點:“充要條件”這一節介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們去解決具體問題則更為困難,因此”充要條件”的教學成為中學數學的難點之一,而必要條件的定義又是本節內容的難點.根據多年教學實踐,學生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“B=A”,稱A是B的必要條件難于接受,A本是B推出的結論,怎么又變成條件了呢?對這學生難于理解。
教學關鍵:找出A、B,根據定義判斷A=B與B=A是否成立。教學中,要強調先找出A、B,否則,學生可能會對必要條件難以理解。
二、教學目標設計:
。ㄒ唬┲R目標:
1、正確理解充分條件、必要條件、充要條件三個概念。
2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關系。
(二)能力目標:
1、培養學生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。
2、培養學生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進行歸納,總結出一般規律。
。ㄈ┣楦心繕耍
1、通過以學生為主體的教學方法,讓學生自己構造數學命題,發展體驗獲取知識的感受。
2、通過對命題的四種形式及充分條件,必要條件的相對性,培養同學們的辯證唯物主義觀點。
3、通過“會觀察”,“敢歸納”,“善建構”,培養學生自主學習,勇于創新,多方位審視問題的創造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現出濃厚的興趣和不畏困難、勇于進取的精神。
三、教學結構設計:
數學知識來源于生活實際,生活本身又是一個巨大的數學課堂,我在教學過程中注重把教材內容與生活實踐結合起來,加強數學教學的實踐性,給數學找到生活的原型。我對本節課的數學知識結構進行創造性地“教學加工”,在教學方法上采用了“合作——探索”的開放式教學模式,使課堂教學體現“參與式”、“生活化”、“探索性”,保證學生對數學知識的主動獲取,促進學生充分、和諧、自主、個性化的發展。
整體思路為:教師創設情境,激發興趣,引出課題 引導學生分析實例,給出定義 例題分析(采用開放式教學) 知識小結 擴展例題 練習反饋
整個教學設計的主要特色:
(1)由生活事例引出課題;
(2)采用開放式教學模式;
(3)擴展例題是分析生活中的名言名句,又將數學融入生活中。
努力做到:“教為不教,學為會學”;要“授之以魚”更要“授之以漁”。
四、教學媒體設計:
本節課是概念課,要避免單一的下定義作練習模式,應該努力使課堂元素更為豐富。這節課,我借助了多媒體課件,配合教學,添加了一些與例題相匹配的圖片背景,以激發學生的學習興趣,另外將學生的自編題利用多媒體課件展示出來分析,提高了課堂教學的效率。
五、教學過程設計:
第一,創設情境,激發興趣,引出課題:
考慮到高一學生學習這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。
我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業員應該買多少?他說買3米足夠了!边@樣,就產生了“3米布料”與“做一件襯衫夠不夠”的關系。用這個事件目的是為了第二部分引導學生得出充分條件的定義。這里要強調該事件包括:A:有3米布料;B:做一件襯衫夠了。
第二個事例是:“一人病重,呼吸困難,急診住院接氧氣!本彤a生了“氧氣”與“活命與否”的關系。用這個事件的目的是為了第二部分引導學生得出必要條件的定義。這里要強調該事件包括:A:接氧氣;B:活了。
用以上兩個生活中的事例來說明數學中應研究的概念、關系,會使學生感到親切自然,有助于提高興趣和深入領會概念的內容,特別是它的必要性。
第二,引導學生分析實例,給出定義。
在第一部分激發起學生的學習興趣后,緊接著開展第二部分,引導學生分析實例,讓學生從事例中抽象出數學概念,得出本節課所要學習的充分條件和必要條件的定義。在引導過程中盡量放慢語速,結合事例幫助學生分析。
得出定義之后,這里有必要再利用本課前面兩節的“邏輯聯結詞”和“四種命題”的知識來加強對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作: 。
還應指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,A是B的必要條件”是怎么回事。這樣處理,學生更容易接受“必要”二字。(因無A則無B,故欲有B,A是必要的)。
當兩個定義分別給出后,我又對它們之間的區別加以分析說明,(充分條件可能會有多余,浪費,必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作: 。(不多不少,恰到好處)。使學生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認識,第三部分再利用具體的數學事例來強化。
高中數學說課稿 篇3
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。
一、教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。 教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數。
二、教法
根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
三、學法
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四、教學過程
(一)創設情境(3分鐘)
“興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)猜想—推理—證明(15分鐘)
激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。 提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿足關系
注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
(三)總結--應用(3分鐘)
1.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。
2.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中
一邊的對角時解三角形的各種情形。完了把時間交給學生。
(五)課堂練習(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發現問題,并解答。
(六)小結反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關系。
2.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
3.會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
五、教學反思
從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的'一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。
高中數學說課稿 篇4
各位評委老師好:今天我說課的題目是
是必修章第節的內容,我將以新課程標準的理念指導本節課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。
一、 教材分析
是在學習了基礎上進一步研究 并為后面學習 做準備,在整個高中數學中起著承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學生實際水平我制定以下教學目標
1、 知識能力目標:使學生理解掌握
2、 過程方法目標:通過觀察歸納抽象概括使學生構建領悟 數學思想,培養 能力
3、 情感態度價值觀目標:通過學習體驗數學的科學價值和應用價值,培養善于
觀察勇于思考的學習習慣和嚴謹 的科學態度
根據教學目標、本節特點和學生實際情況本節重點是 ,由于學生對 缺少感性認識,所以本節課的重點是
二、教法學法
根據教師主導地位和學生主體地位相統一的規律,我采用引導發現法為本節課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。
三、 教學過程
1、由……引入:
把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:……
2、由實例得出本課新的知識點是:……
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中:
4、能力訓練。
課后練習……
使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、總結結論,強化認識。
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。
6、變式延伸,進行重構。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。
四、教學評價
學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發現,以及學習的興趣和成就感。
高中數學說課稿 篇5
各位老師:
大家好!
我叫***,來自**。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。
2.教學的重點和難點
重點:理解古典概型及其概率計算公式。
難點:古典概型的判斷及把一些實際問題轉化成古典概型。
二、教學目標分析
1.知識與技能目標
。1)通過試驗理解基本事件的概念和特點
。2)在數學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。
2、過程與方法:
經歷公式的推導過程,體驗由特殊到一般的數學思想方法。
3、情感態度與價值觀:
。1)用具有現實意義的實例,激發學生的學習興趣,培養學生勇于探索,善于發現的創新思想。
(2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。
三、教法與學法分析
1、教法分析:根據本節課的特點,采用引導發現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。
2、學法分析:學生在教師創設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態度。
、鍎撛O情景、引入新課
在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:
試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由代表匯總;
試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由代表匯總。
在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。
1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。
2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?]
「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養學生運用數學語言的能力。隨著新問題的提出,激發了學生的求知欲望,通過觀察對比,培養了學生發現問題的能力。
㈡思考交流、形成概念
學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深對新概念的理解。
[基本事件有如下的兩個特點:
(1)任何兩個基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。
例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?
先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優點。
「設計意圖」將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點
觀察對比,發現兩個模擬試驗和例1的共同特點:
讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。
[經概括總結后得到:
。1)試驗中所有可能出現的基本事件只有有限個;(有限性)
。2)每個基本事件出現的可能性相等。(等可能性)
我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。
㈢觀察分析、推導方程
問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發現其中的聯系,最后概括總結得出古典概型計算任何事件的概率計算公式:
「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。
提問:
(1)在例1的實驗中,出現字母"d"的概率是多少?
。2)在使用古典概型的概率公式時,應該注意什么?
「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
㈣例題分析、推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。
「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。鞏固學生對已學知識的掌握。
例3同時擲兩個骰子,計算:
。1)一共有多少種不同的結果?
。2)其中向上的點數之和是5的結果有多少種?
。3)向上的點數之和是5的概率是多少?
先給出問題,再讓學生完成,然后引導學生分析問題,發現解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數。
「設計意圖」利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態度。
、樘骄克枷、鞏固深化
問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?
要求學生觀察對比兩種結果,找出問題產生的原因。
「設計意圖」通過觀察對比,發現兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養成自主探究能力。
、昕偨Y概括、加深理解
1.基本事件的特點
2.古典概型的特點
3.古典概型的概率計算公式
學生小結歸納,不足的地方老師補充說明。
「設計意圖」使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。
㈦布置作業
課本練習1、2、3
「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節課的理解。
【關于高中數學說課稿模板匯編五篇】相關文章:
關于高中數學說課稿模板匯編5篇08-01
關于高中數學說課稿模板匯編十篇08-13
關于高中數學說課稿模板六篇06-22
有關高中數學說課稿模板匯編五篇07-30
有關高中數學說課稿模板匯編八篇07-02
關于高中數學說課稿模板集合八篇08-07
關于高中數學說課稿模板集錦八篇08-01
關于高中數學說課稿模板集錦7篇07-31
關于高中數學說課稿模板合集九篇07-30