精選高中數學說課稿模板八篇
作為一無名無私奉獻的教育工作者,編寫說課稿是必不可少的,編寫說課稿助于積累教學經驗,不斷提高教學質量。那么寫說課稿需要注意哪些問題呢?以下是小編為大家整理的高中數學說課稿8篇,僅供參考,大家一起來看看吧。
高中數學說課稿 篇1
各位評委老師,大家好!
我是本科數學**號選手,今天我要進行說課的課題是高中數學必修一第一章第三節第一課時《函數單調性與最大(。┲怠罚ǹ梢栽谶@時候板書課題,以緩解緊張)。我將從教材分析;教學目標分析;教法、學法;教學過程;教學評價五個方面來陳述我對本節課的設計方案。懇請在座的專家評委批評指正。
一、教材分析
1、 教材的地位和作用
。1)本節課主要對函數單調性的學習;
。2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節來寫)
。3)它是歷年高考的熱點、難點問題
。ǜ鶕唧w的課題改變就行了,如果不是熱點難點問題就刪掉)
2、 教材重、難點
重點:函數單調性的定義
難點:函數單調性的證明
重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)
3.學情分析
高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強.
二、教學目標
知識目標:
。1)函數單調性的定義
(2)函數單調性的證明
能力目標:
培養學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想
情感目標:
培養學生勇于探索的精神和善于合作的意識
(這樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)
三、教法學法分析
1、教法分析
“教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發式引導法、小組合作討論法、反饋式評價法
2、學法分析
“授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發現法、合作交流法、歸納總結法。
(前三部分用時控制在三分鐘以內,可適當刪減)
四、教學過程
1、以舊引新,導入新知
通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)
2、創設問題,探索新知
緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。
讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規范學生的數學用語。
讓學生自主學習函數單調區間的定義,為接下來例題學習打好基礎。
3、 例題講解,學以致用
例1主要是對函數單調區間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區間的掌握。強調單調區間一般寫成半開半閉的形式
例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。
例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養學生勇于探索的精神和善于合作的意識。
5、作業布置
為了讓學生學習不同的數學,我將采用分層布置作業的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2
6、板書設計
我力求簡潔明了地概括本節課的學習要點,讓學生一目了然。
。ㄟ@部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)
五、教學評價
本節課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協調作用,促進其數學素養不斷提高。
高中數學說課稿 篇2
本節課講述的是人教版高一數學(上)3.2等差數列(第一課時)的內容。
一、教材分析
1、教材的地位和作用:
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
2、教學目標
根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標
a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建模”的思想方法并能運用。
b在能力上:培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
c在情感上:通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。
3、教學重點和難點
根據教學大綱的要求我確定本節課的教學重點為:
、俚炔顢盗械母拍。
、诘炔顢盗械耐椆降耐茖н^程及應用。
由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個難點。同時,學生對“數學建!钡乃枷敕椒ㄝ^為陌生,因此用數學思想解決實際問題是本節課的另一個難點。
二、學情教法分析:
對于三中的高一學生,知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合
這類學生的心理發展特點,從而促進思維能力的進一步發展。
針對高中生這一思維特點和心理特征,本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。
三、學法指導:
在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學程序
本節課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業,六個教學環節構成。
(一)復習引入:
1.從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______。(N﹡;解析式)
通過練習1復習上節內容,為本節課用函數思想研究數列問題作準備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92 ①
3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25 ②
通過練習2和3引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。
(二) 新課探究
1、由引入自然的給出等差數列的概念:
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,
這個常數叫做等差數列的公差,通常用字母d來表示。強調:
① “從第二項起”滿足條件;
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個常數(強調“同一個常數” );
在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:
an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。
1. 9 ,8,7,6,5,4,??;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01
3. 0,0,0,0,0,0,??.; √ d=0
4. 1,2,3,2,3,4,??;×
5. 1,0,1,0,1,??×
其中第一個數列公差<0,>0,第三個數列公差=0
由此強調:公差可以是正數、負數,也可以是0
2、第二個重點部分為等差數列的通項公式
在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。
若一等差數列{an }的首項是a1,公差是d,則據其定義可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
??
猜想: a40 = a1 +39d,進而歸納出等差數列的通項公式:
an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
??
an – an-1=d
將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d
。1)
當n=1時,(1)也成立,
所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數列{an}的通項公式。
在迭加法的證明過程中,我采用啟發式教學方法。
利用等差數列概念啟發學生寫出n-1個等式。
對照已歸納出的通項公式啟發學生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想” 的教學要求
接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2 ,
即an=2n-1 以此來鞏固等差數列通項公式運用
同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。
。ㄈ⿷门e例
這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另
一部分量。
例1 (1)求等差數列8,5,2,?的第20項;第30項;第40項
(2)-401是不是等差數列-5,-9,-13,?的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an.
例2 在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。
在前面例1的基礎上將例2當作練習作為對通項公式的鞏固
例3 是一個實際建模問題
建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發式和討論式相結合的教學方法。啟發學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型------等差數列:(學生討論分析,分別演板,教師評析問題。問題可能出現在:項數學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。
設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數學實際問題引出等差數列問題,激發了學生的興趣;3.再者通過數學實例展示了“從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的“數學建!钡臄祵W思想方法
(四)反饋練習
1、小節后的練習中的第1題和第2題(要求學生在規定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。
目的:對學生加強建模思想訓練。
3、若數例{an} 是等差數列,若 bn = k an ,(k為常數)試證明:數列{bn}是等差數列
此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。
。ㄎ澹w納小結(由學生總結這節課的收獲)
1.等差數列的概念及數學表達式.
強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數
2.等差數列的通項公式 an= a1+(n-1) d會知三求一
3.用“數學建!彼枷敕椒ń鉀Q實際問題
(六)布置作業
必做題:課本P114 習題3.2第2,6 題
選做題:已知等差數列{an}的首項a1=-24,從第10項開始為正數,求公差d的取值范圍。
。康模和ㄟ^分層作業,提高同學們的求知欲和滿足不同層次的學生需求)
五、板書設計
在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。
高中數學說課稿 篇3
一、地位作用
數列是高中數學重要的內容之一,等比數列是在學習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個高中數學內容中數列與已學過的函數及后面的數列極限有密切聯系,它也是培養學生數學能力的良好題材,它可以培養學生的觀察、分析、歸納、猜想及綜合解決問題的能力。
基于此,設計本節的數學思路上:
利用類比的思想,聯系等差數列的概念及通項公式的學習方法,采取自學、引導、歸納、猜想、類比總結的教學思路,充分發揮學生主觀能動性,調動學生的主體地位,充分體現教為主導、學為主體、練為主線的教學思想。
二、教學目標
知識目標:1)理解等比數列的概念
2)掌握等比數列的通項公式
3)并能用公式解決一些實際問題
能力目標:培養學生觀察能力及發現意識,培養學生運用類比思想、解決分析問題的能力。
三、教學重點
1)等比數列概念的理解與掌握 關鍵:是讓學生理解“等比”的特點
2)等比數列的通項公式的推導及應用
四、教學難點
“等比”的理解及利用通項公式解決一些問題。
五、教學過程設計
(一)預習自學環節。(8分鐘)
首先讓學生重新閱讀課本105頁國際象棋發明者的故事,并出示預習提綱,要求學生閱讀課本P122至P123例1上面。
回答下列問題
1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數列的定義。
2)觀察以下幾個數列,回答下面問題:
1, , , ,……
。1,-2,-4,-8……
1,2,-4,8……
-1,-1,-1,-1,……
1,0,1,0……
、儆心膸讉是等比數列?若是公比是什么?
、诠萹為什么不能等于零?首項能為零嗎?
、酃萹=1時是什么數列?
、躴>0時數列遞增嗎?q<0時遞減嗎?
3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?
4)等比數列通項公式與函數關系怎樣?
(二)歸納主導與總結環節(15分鐘)
這一環節主要是通過學生回答為主體,教師引導總結為主線解決本節兩個重點內容。
通過回答問題(1)(2)給出等比數列的定義并強調以下幾點:①定義關鍵字“第二項起”“常數”;
②引導學生用數學語言表達定義: =q(n≥2);③q=1時為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。
、躴>0時等比數列單調性不定,q<0為擺動數列,類比等差數列d>0為遞增數列,d<0為遞減數列。
通過回答問題(3)回憶等差數列的推導方法,比較兩個數列定義的不同,引導推出等比數列通項公式。
法一:歸納法,學會從特殊到一般的方法,并從次數中發現規律,培養觀察力。
法二:迭乘法,聯系等差數列“迭加法”,培養學生類比能力及新舊知識轉化能力。
高中數學說課稿 篇4
尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書數學必修2(A版),是第三章直線與方程中的第2節的第一課時3.2.1直線的點斜式方程的內容。下面我將從教學背景、教學方法、教學過程及教學特點等四個方面具體說明。
一、教學背景的分析
1.教材分析
直線的方程是學生在初中學習了一次函數的概念和圖象及高中學習了直線的斜率后進行研究的。直線的方程屬于解析幾何學的基礎知識,是研究解析幾何學的開始,對后續研究兩條直線的位置關系、圓的方程、直線與圓的位置關系、圓錐曲線等內容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內容之一!爸本的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產實踐中有著廣泛的應用。同時在這一節中利用坐標法來研究曲線的數形結合、幾何直觀等數學思想將貫穿于我們整個高中數學教學。
2.學情分析
我校的生源較差,學生的基礎和學習習慣都有待加強。又由于剛開始學習解析幾何,第一次用坐標法來求曲線的方程,在學習過程中,會出現“數”與“形”相互轉化的困難。另外我校學生在探究問題的能力,合作交流的意識等方面更有待加強。
根據上述教材分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3.教學目標
(1)了解直線的方程的概念和直線的點斜式方程的推導過程及方法;
(2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學會準確地使用直線的點斜式、斜截式方程 ;
(3)從實例入手,通過類比、推廣、特殊化等,使學生體會從特殊到一般再到特殊的認知規律;
(4)提倡學生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數的關系等活動,培養學生主動探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。
4. 教學重點與難點
(1)重點: 直線點斜式、斜截式方程的特點及其初步應用。
(2)難點:直線的方程的概念,點斜式方程的推導及點斜式、斜截式方程的應用。
二、教法學法分析
1.教法分析:根據學情,為了能調動學生學習的積極性,本節課采用“實例引導的啟發式”問題教學法。幫助學生將幾何問題代數化,用代數的語言描述直線的幾何要素及其關系,進而將直線的問題轉化為直線方程的問題,通過對直線的方程的研究,最終解決有關直線的一些簡單的問題。另外可以恰當的利用多媒體課件進行輔助教學,激發學生的學習興趣。
2.學法分析:學生從問題中嘗試、總結、質疑、運用,體會學習數學的樂趣;通過推導直線的點斜式方程的學習,要了解用坐標法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數”的轉化思想。
下面我就對具體的教學過程和設計加以說明:
三、教學過程的設計及實施
整個教學過程是由六個問題組成,共分為四個環節,學習或涉及四個概念:
溫故知新,澄清概念----直線的方程
深入探究,獲得新知--------點斜式
拓展知識,再獲新知--------斜截式
小結引申,思維延續--------兩點式
平面上的點可以用坐標表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節要學習的內容。
(一)溫故知新,澄清概念----直線的方程
問題一:畫出一次函數y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標有何關系?
[學生活動] 通過動手畫圖,思考并嘗試用語言進行初步的表述。
[教師活動] 對于不同學生的表述進行分析、歸納,用規范的語言對方程和直線的方程進行描述。
[設計意圖]從學生熟知的舊知識出發澄清直線的方程的概念,試圖做到“用學生已有的數學知識去學數學”,從而突破難點。通過對這個問題的研究,一方面認識到以方程的解為坐標的點在直線上,另一方面認識到直線上的點的坐標滿足方程;從而使同學意識到直線可以由直線上任意一點P(x,y)的坐標x和y之間的等量關系來表示。
問題二:若直線經過點A(-1, 3),斜率為-2,點P在直線l上。
(1) 若點P在直線l上從A點開始運動,橫坐標增加1時,點P的坐標是 ;
(2)畫出直線l,你能求出直線l的方程嗎?
(3)若點P在直線l上運動,設P點的坐標為(x,y),你會有什么方法找到x,y滿足的關系式?
[學生活動]學生獨立思考5分鐘,必要的'話可進行分組討論、合作交流。
[教師活動]巡視。肯定學生的各種方法及大膽嘗試的行為;并引導學生觀察發現,得到當點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。
[設計意圖]復習斜率公式;待定系數法;初步體會坐標法。同時引導學生注意為什么要把分式化簡?(若不化簡,就少一點),感受數學簡潔的美感和嚴謹性。還要指出這樣的事實:當點P在直線l上運動時,P的坐標(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標的點在直線l上。把學生的思維引到用坐標法研究直線的方程上來,此時再把問題深入,進入第二環節。
(二)深入探究,獲得新知----點斜式
問題三: ① 若直線l經過點P0(x0,y0),且斜率為k,求直線l的方程。
②直線的點斜式方程能否表示經過P0(x0,y0)的所有直線?
[學生活動] ①學生敘述,老師板書,強調斜率公式與點斜式的區別。 ②指導學生用筆轉一轉不難發現,當直線l的傾斜角α=90°時,斜率k不存在,當然不存在點斜式方程;討論k=0的情況;觀察并總結點斜式方程的特征。
[設計意圖] 由特殊到一般的學習思路,突破難點,培養學生的歸納概括能力。通過對這個問題的探究使學生獲得直線點斜式方程;由②知:當直線斜率k不存在時,不能用點斜式方程表示直線,培養思維的嚴謹性,這時直線l與y軸平行,它上面的每一點的橫坐標都等于x0,直線l的方程是:x=x0;通過學生的觀察討論總結,明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎練習,突破重難點。
問題四:分別求經過點且滿足下列條件的直線的方程
(1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。
[練習]P95.1、2。
[學生活動]學生獨立完成并展示或敘述,老師點評。
[設計意圖]充分用好教材的例題和習題,因為這些題都是專家精心編排的,充分體現必要性及合理性;做到及時反饋,便于反思本環節的教學,指導下個環節的安排;突破重點內容后,進入第三環節。
(三)拓展知識,再獲新知----斜截式
問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。
(2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。
[學生活動]學生獨立完成后口述,教師板書。
[設計意圖] 由一般到特殊再到一般,培養學生的推理能力,同時引出截距的概念及斜截式方程,強調截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數的關系。通過下面的基礎練習,突破重點。
[練習]P95.3。
[設計意圖]充分用好教材習題,及時反饋本環節的教學情況,指導下個環節的安排。
(四)小結引申,思維延續----兩點式
課堂小結 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數法。)
2、哪些地方還沒有學好?
問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。
(2)直線l過點(2,-1)和點(3,-3),求直線l的方程。
[學生活動]學生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。
[教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,有時間的話,可以讓學生口述解題思路,也可以投影學生的證明過程,糾正出現的錯誤,規范書寫的格式;沒時間就布置分層作業。
[設計意圖](1)小題與上一節的平行綜合,學生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點的學生有一些發散思維的機會,以及課后學習的空間,使探究氣氛有一點高潮。另外也為下節課研究直線的兩點式方程作了重要的準備。
分層作業 必做題:P100.A組:1.(1)(2)(3)、5.
選做題:P100.A組:1.(4)(5)(6).
[設計意圖]通過分層作業,做到因材施教,使不同的學生在數學上得到不同的發展,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展。
四、教學特點分析
(一)實例引導。在字母運算、公式推導之前,總是用實例作為鋪墊,使學生有學習知識的可能和興趣,關注學困生的成長與發展。
(二)啟發式教學。教學中總是以提問的方式敘述所學內容,如:1.直角坐標系內的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學過的一次函數有什么關系?等等。啟發學生的思維,作好與學生的對話與交流活動。
(三)注重自主探究。設計問題鏈,環環相扣,使學生的探究活動貫穿始終。教師總是站在學生思維的最近發展區上,布設了由淺入深的學習環境突破重點、難點,引導學生逐步發現知識的形成過程。設計了兩次思維發散點,分別是問題二和問題六的第(2)問,要求學生分組討論,合作交流,為學生創造充分的探究空間,學生在交流成果的過程中,高效的完成教學任務。
高中數學說課稿 篇5
一、教學目標
。ㄒ唬┲R與技能
1、進一步熟練掌握求動點軌跡方程的基本方法。
2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養學生觀察能力、抽象概括能力及創新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強化類比、聯想的方法,領會方程、數形結合等思想。
。ㄈ┣楦袘B度價值觀
1、感受動點軌跡的動態美、和諧美、對稱美。
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣。
二、教學重點與難點
教學重點:運用類比、聯想的方法探究不同條件下的軌跡。
教學難點:圖形、文字、符號三種語言之間的過渡。
三、、教學方法和手段
教學方法:觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。
教學手段:利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。
教學模式:重點中學實施素質教育的課堂模式“創設情境、激發情感、主動發現、主動發展”。
四、教學過程
1、創設情景,引入課題
生活中我們四處可見軌跡曲線的影子。
演示:這是美麗的城市夜景圖。
演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數目越多,軌跡種類也越多。
演示建筑中也有許多美麗的軌跡曲線。
設計意圖:讓學生感受數學就在我們身邊,感受軌跡,曲線的動態美、和諧美、對稱美,激發學習興趣。
2、激發情感,引導探索
靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優美的曲線飛出去呢?我們把這個問題轉化為數學問題就是新教材高二上冊88頁20題,也就是這里的例題1。
高中數學說課稿 篇6
尊敬的各位專家、評委:
上午好!
今天我說課的課題是人教A版必修2第二章第二節《直線與圓的位置關系》。
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
學生在初中的學習中已經了解直線與圓的位置關系,并知道可以利用直線與圓的焦點的個數以及圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系。但是,在初中學習時,利用圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系的方法卻以結論性的形式呈現。在高一學習了解析幾何后,要考慮的問題是如何掌握由直線和圓的方程判斷直線與圓的位置關系的方法。解決問題的方法主要是幾何法和代數法。其中幾何法應該是在初中學習的基礎上,結合高中所學的點到直線的距離公式求出圓心與直線的距離d后,比較與半徑r的關系。從而作出判斷,適可而止第引進用聯立方程組轉化為二次方程判別根的“純代數判別法”,并與“幾何法”欣賞比較,以決優劣,從而也深化了基本的“幾何法”。含參數的問題、簡單的弦的問題、切線問題等綜合問題作為進一步的拓展提高或綜合應用,也適度第引入課堂教學中,但以深化“判定直線與圓的位置關系”為目的,要控制難度。雖然學生學習解析幾何了,但是把幾何問題代數化無論是思維習慣還是具體轉化方法,學生仍是似懂非懂,因此應不斷強化,逐漸內化為學生的習慣和基本素質。
二、目標分析
(一)、教學目標
1、知識與技能
理解直線與圓的位置的種類;
利用平面直角坐標系中點到直線的距離公式求圓心到直線的距離;
會用點到直線的距離來判斷直線與圓的位置關系。
2、過程與方法
設直線L:ax+by+c=o,圓C:x2+y2+Dx+Ey+F=0,圓的半徑為r,圓心(- ,- )到直線的距離為d,則判別直線與圓的位置關系的根據有以下幾點:
當d >r時,直線l與圓c相離;
當d =r時,直線l與圓c相切;
當d
3、情態與價值觀
讓學生通過觀察圖形,理解并掌握直線與圓的位置關系,培養學生數形結合的思想。
(二)、教學重點與難點
1、重點:直線與圓的位置關系的幾何圖形及其判斷方法。
2、難點:用坐標判斷直線與圓的位置關系。
三、教法學法分析
(一)、教法
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
1、啟發引導學生思考、分析、實驗、探索、歸納。
2、采用“從特殊到一般”、“從具體到抽象”的方法。
3、體現“對比聯系”、“數形結合”及“分類討論”的思想方法。
4、投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,對照,歸納,整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯系,使新學知識更牢固,理解更深刻。
(二)、學法
建構主義學習理論認為,學習是學生積極主動地建構知識的過程,學習應該與學生熟悉的背景相聯系。在教學中,讓學生在問題情境中,經歷知識的形成和發展,通過觀察、操作、歸納、探索、交流、反思參與學習,認識和理解數學知識,學會學習,發展能力。
四、教學過程分析
(一)、教學過程設計
問題 設計意圖 師生活動
1、初中學過的平面幾何中,直線與圓的位置關系有幾類? 啟發學生由圖形獲取判斷直線與圓的位置關系的直觀認知,引入新課 師:讓學生之間進行討論,交流,引導學生觀察圖形,導入新課
生:看圖,并說出自己的看法
2、直線與圓的位置關系有幾種? 得出直線與圓的位置關系的幾何特征與種類 師:引導學生利用類比,歸納的思想,總結直線與圓的位置關系的種類,進一步神話數形結合的數學思想
生:學生觀察圖形,利用類比,歸納的思想,總結直線與圓的位置關
3、在初中,我們怎么樣判斷直線與圓的位置關系呢?如何用直線與圓的方程判斷他們之間的位置關系呢?
你能說出判斷直線與圓的位置關系的兩
種方法嗎? 使學生回憶初中的數學知識,培養抽象的概括能力。
抽象判斷呢直線與圓的位置關系的思路和方法 師:引導學生回憶初中判斷直線與圓的位置關系的思想過程
生:回憶直線與圓的位置關系的判斷過程
師:引導學生從集合的角度判斷直線與圓的方法
生:利用圖形,尋求兩種方法的數學思路
5、你能用兩種判斷直線與圓的位置關系的數學思路解決例1的問題嗎? 體會判斷直線與圓的位置關系的思想方法,關注量與量的之間的關系 師:指導學生閱讀教材書上的例1
生:閱讀教材書上的例1,并完成教材書上的136頁的練習題2
6、通過學習教材書上的例1,你能總結下判斷直線與圓的位置 關系的步驟嗎? 是學生熟悉判斷直線與圓的位置關系的基本步驟 生:于都例1
師:分析例1 ,并展示解答過程,啟發學生概括判斷直線與圓的位置關系的基本步驟,注意給學生留有思考的時間
生:交流自己總結的步驟
7、通過學習教材書上的例2,你能說明例2中體現的數學思想方法嗎? 進一步深化數形結合的數學思想 師:指導學生閱讀并完成教材書上的例2 ,啟發學生利用數形結合的數學思想解決問題
生:閱讀教材書上的例2 ,并完成137的練習題
8、通過例2的學習,你發現了什么? 明確弦長的運算方法 師:引導并啟發學生探索直線與圓的相交弦的求法
生:通過分析,抽象,歸納,得出相交弦的運算方法
9、完成教材書上的136頁的習題1234 鞏固所學過的知識,進一步理解和掌握直線與圓的位置關系 師:指導學生完成練習題
生:互相討論交流,完成練習題
10、課堂小結
教師提出下列問題讓學生思考
通過直線與圓的位置關系的判斷,你學到什么了?
判斷直線與圓的位置關系有幾種方法?他們的特點是什么?
如何求直線與圓的相交弦長?
(二)、作業設計
作業分為必做題和選擇題,必做題是對本節課學生知識水平的反饋,選擇題是對本節課內容的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生的自主發展、合作探究的學習氛圍的形成。
我設計了以下作業:
必做題:課后習題A 1,2,3;
選擇題:課后習題B1,2,3;
(三)、板書設計
板書要基本體現課堂的內容和方法,體現課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對本節是否有一個完整的集訓,并進行及時的調整和補充。
以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。
謝謝!
高中數學說課稿 篇7
一、教材分析
1、教學內容
本節課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。
2、教材的地位和作用
函數單調性是高中數學中相當重要的一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節內容不僅為今后的函數學習打下理論基礎,還有利于培養學生的抽象思維能力,及分析問題和解決問題的能力。
3、教材的重點﹑難點﹑關鍵
教學重點:函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個局部概念。
教學難點:領會函數單調性的實質與應用,明確單調性是一個局部的概念。
教學關鍵:從學生的學習心理和認知結構出發,講清楚概念的形成過程、
4、學情分析
高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強。
二、目標分析
(一)知識目標:
1、知識目標:理解函數單調性的概念,掌握判斷一些簡單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說出函數的單調區間。
2、能力目標:通過證明函數的單調性的學習,使學生體驗和理解從特殊到一般的數學歸納推理思維方式,培養學生的觀察能力,分析歸納能力,領會數學的歸納轉化的思想方法,增加學生的知識聯系,增強學生對知識的主動構建的能力。
3、情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發求知欲望。領會用運動變化的觀點去觀察分析事物的方法。通過滲透數形結合的數學思想,對學生進行辨證唯物主義的思想教育。
。ǘ┻^程與方法
培養學生嚴密的邏輯思維能力以及用運動變化、數形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發學生學習興趣,培養學生發現問題、分析問題和解題的邏輯推理能力。
三、教法與學法
1、教學方法
在教學中,要注重展開探索過程,充分利用好函數圖象的直觀性、發揮多媒體教學的優勢。本節課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發現新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。
2、學習方法
自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學生學習的主要方式。
四、過程分析
本節課的教學過程包括:問題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業六個板塊。這里分別就其過程和設計意圖作一一分析。
。ㄒ唬﹩栴}情景:
為了激發學生的學習興趣,本節課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發學生的學習興趣和求知欲望,為學習函數的單調性做好鋪墊。(祥見課件)
新課程理念認為:情境應貫穿課堂教學的始終。本節課所創設的生活情境,讓學生親近數學,感受到數學就在他們的周圍,強化學生的感性認識,從而達到學生對數學的理解。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。
。ǘ┖瘮祮握{性的定義引入
1、幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數y=2x+4,,的圖象的動態形式形象出x、y間的變化關系,使學生對函數單調性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:
問題1、觀察下列函數圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學生的交流、探討、總結,得到單調性的“通俗定義”:
從在某一區間內當x的值增大時,函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數學符號語言。幾何畫板的靈活使用,數形有機結合,引導學生從圖形語言到數學符號語言的翻譯變得輕松。
設計意圖:
、偻ㄟ^學生熟悉的知識引入新課題,有利于激發學生的學習興趣和學習熱情,同時也可以培養學生觀察、猜想、歸納的思維能力和創新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。
、谕ㄟ^學生已學過的一次y=2x+4,,的圖象的動態形式形象地反映出x、y間的變化關系,使學生對函數單調性有感性認識。
、蹚膶W生的原有認知結構入手,探討單調性的概念,符合“最近發展區的理論”要求。
、軓膱D形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數學的一種方法,符合新課程的理念。
(三)增函數、減函數的定義
在前面的基礎上,讓學生討論歸納:如何使用數學語言來準確描述函數的單調性?在學生回答的基礎上,給出增函數的概念,同時要求學生討論概念中的關鍵詞和注意點。
定義中的“當x1x2時,都有f(x1) 注意: (1)函數的單調性也叫函數的增減性; 。2)注意區間上所取兩點x1,x2的任意性; 。3)函數的單調性是對某個區間而言的,它是一個局部概念。 讓學生自已嘗試寫出減函數概念,由兩名學生板演。提出單調區間的概念。 設計意圖:通過給出函數單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數的單調性其實也叫做函數的增減性,它是對某個區間而言的,它是一個局部概念,同時明確判定函數在某個區間上的單調性的一般步驟。這樣處 理,同時也是讓學生感悟、體驗學習數學感念的方法,提高其個性品質。 。ㄋ模├}分析 在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。 2、例2、證明函數在區間(—∞,+∞)上是減函數。 在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。 變式一:函數f(x)=—3x+b在R上是減函數嗎?為什么? 變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。 變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。 錯誤:實質上并沒有證明,而是使用了所要證明的結論 例題設計意圖:在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據單調函數的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數學問題。目的是進一步強化解題的規范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。 (五)鞏固與探究 1、教材p36練習2,3 2、探究:二次函數的單調性有什么規律? 。◣缀萎嫲逖菔,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。 設計意圖:通過觀察圖象,對函數是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發現和解決問題的一種常用數學方法。 通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。 。┗仡櫩偨Y 通過師生互動,回顧本節課的概念、方法。本節課我們學習了函數單調性的知識,同學們要切記:單調性是對某個區間而言的,同時在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進行判斷和證明。 設計意圖:通過小結突出本節課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數學的和諧美。 。ㄆ撸┱n外作業 1、教材p43習題1。3A組1(單調區間),2(證明單調性); 2、判斷并證明函數在上的單調性。 3、數學日記:談談你本節課中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。 設計意圖:通過作業1、2進一步鞏固本節課所學的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數學,在數學上獲得不同的發展。作業3這種新型的作業形式是其很好的體現。 。ㄆ撸┌鍟O計(見ppt) 五、評價分析 有效的概念教學是建立在學生已有知識結構基礎上,,因此在教學設計過程中注意了: 第一、教要按照學的法子來教; 第二、在學生已有知識結構和新概念間尋找“最近發展區”; 第三、強化了重探究、重交流、重過程的課改理念。讓學生經歷“創設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數學知識的發生、發展過程,培養“用數學”的意識和能力,成為積極主動的建構者。 本節課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現知識的發生和形成過程,使學生始終處于問題探索研究狀態之中,激情引趣,并注重數學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。 一.說教材 1.1 教材結構與內容簡析 本節課為《江蘇省中等職業學校試用教材數學(第二冊)》5.6函數圖象的定位作圖法的第一課時,主要內容為基本函數 與一般函數 間的圖象平移變換規律。 函數圖象的平移,既是前階段函數性質及具體函數研究的延續和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內容還蘊涵著重要的數學思想方法,如化歸思想、映射與對應思想、換元方法等。 1.2 教學目標 1.2.1知識目標 、、給定平移前后函數解析式,能熟練敘述相應的平移變換,正確掌握平移方向與 、 符號的關系。 、啤⒛茌^熟練地化簡較復雜的函數解析式,找出對應的基本函數模型(如一次函數,反比例函數、指數函數等)。 ⑶、初步學會應用平移變換規律研究較復雜的函數的具體性質(如值域、單調性等)。 1.2.2能力目標 ⑴、在數學實驗平臺上,能自主探究,改變相應參數和函數解析式,觀察相應圖象變化,經歷命題探索發現的過程,提高觀察、歸納、概括能力。 、、結合學習中發現的問題,學會借助于數學軟件等工具研究、探索和解決問題,學會數學 地解決問題。 、恰B透數學思想與方法(如化歸、映射的思想,換元的方法)的學習,發展學生的非邏輯思維能力(合情推理、直覺等)。 1.2.3情感目標 培養學生積極參與、合作交流的主體意識,在知識的探索和發現的過程中,使學生感受數學學習的意義,改善學生的數學學習信念(態度、興趣等)。 1.3 教材重點和難點處理思路 重點:函數圖象的平移變換規律及應用 難點:經歷數學實驗方法探索平移對函數解析式的影響及如何利用平移變換規律化簡函數解析式、研究復雜函數 教材在這段內容的處理上,注重直觀性背景,注重學生豐富感性知識的獲得,淡化形式化的邏輯推導和形式化的結果即平移公式。實際教學中,我們發現如果學生不經受足夠的親身體驗而簡單的記住結論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯系,并且移軸與移圖象之間也容易搞混,說明這段內容不能采取簡單的“告訴”方式,須讓學生自主發現命題、發現規律,讓他們“知其然,更要知其所以然! 為了突出重點、突破難點,在教學中采取了以下策略: ⑴、從學生已有知識出發,精心設計一些適合學生學力的數學實驗平臺,分層次逐步引導學生觀察圖象的平移方向與函數解析式中 、 符號的關系,抽象、歸納出平移變換規律。 ⑵、創設情境,引發學生認知沖突,激發學生求知欲,能借助于數學軟件多角度積極探求錯誤原因,使學生認識到形如 的函數須提取 前的系數化為 的形式,從而真正認識解析式形式化的特點。 、、數學實驗采取小組合作研究共同完成簡單實驗報告的形式,通過學生的自主探究、合作交流,從而實現對平移變換規律知識的建構。 二.說教法 針對職高一年級學生的認知特點和心理特征,在遵循啟發式教學原則的基礎上,本節課我主要采取以實驗發現法為主,以討論法、練習法為輔的教學方法,引導學生通過實驗手段,從直觀、想象到發現、猜想,親歷數學知識建構過程,體驗數學發現的喜悅。 本節課的設計一方面重視學生數學學習過程是活動的過程,因此不是按照已形式化了的現成的數學規則去操作數學,而是采取數學實驗的方式,使學生有機會經受足夠的親身體驗,親歷知識的自主建構過程;使學生學會從具體情境中提取適當的概念,從觀察到的實例中進行概括,進行合理的數學猜想與數學驗證,并作更高層次的數學概括與抽象;從而學會數學地思考。 另一方面,注重創設機會使學生有機會看到數學的全貌,體會數學的全過程。整堂課的設計圍繞研究較復雜函數的性質展開,以問題“函數 的性質如何”為主線,既讓學生清楚研究函數圖象平移的必要性,明確學習目標,又讓學生初步學會如何應用規律解決問題,體會知識的價值,增強求知欲。 總之,本節課采用數學實驗發現教學,學生采取小組合作的形式自主探究;利用實物投影進行集體交流,及時反饋相關信息。 三.說學法 “學之道在于悟,教之道在于度!睂W生是學習的主體,教師在教學過程中須將學習的主動權交給學生。 美國某大學有一句名言:“讓我聽見的,我會忘記;讓我看見的,我就領會了;讓我做過的,我就理解了!蓖ㄟ^學生的自主實驗,在探索新知的經歷和獲得新知的體驗的基礎之上,真正正確掌握平移方向。 教師的“教”不僅要讓學生“學會知識”,更主要的是要讓學生“會學知識”。正如荷蘭數學教育家弗賴登塔爾所指出,“數學知識既不是教出來的,也不是學出來的,而是研究出來的!北竟澱n的教學中創設利于學生發現數學的實驗情境,讓學生自主地“做數學”,將傳統意義下的“學習”數學改變為“研究”數學。從而,使傳授知識與培養能力融為一體,在轉變學習方式的同時學會數學地思考。 四.說程序 4.1創設情境,引入課題 在簡要回顧前面研究的具體函數(指數函數、冪函數、三角函數等)性質后,提出問題“如何研究 的性質?” 引導學生討論后,總結出兩種思路,即:思路1、通過描點法作出函數的圖象,借助于圖象研究相關性質;思路2、將 的性質問題化歸為 的問題,借助于基本函數 的性質解決新問題。 從而自然地引出課題,關鍵是找出 與 的關系,尤其是圖象間的聯系。更一般地,就是基本函數 與 間的聯系。 4.2數學實驗,自主探索 這一環節主要分兩階段。 1、嘗試初探 引例、函數 與 圖象間的關系 這一階段主要由教師講解,學生觀察發現,意在突出兩函數圖象形狀相同、位置不同,后者可以由前者平移得到。 講解時,利用幾何畫板的度量功能,給出兩個對應點的坐標,易于學生發現點的坐標關系,并給出相應的輔助線,一方面便于學生發現規律,另一方面也是為后面定位作圖法的學習作好鋪墊。 2、實驗發現 本階段由學生以小組合作探索的形式完成,通過填寫實驗報告的形式完成探索規律的任務。 實驗1、試改變實驗平臺1中的參數 、 ,觀察由 的圖象到 的變換現象,依照給出的樣例填寫下表,并總結其中的平移變換規律。 函數 解析式平移變換規律12向左平移2個單位,向上平移1個單位 實驗結論 【精選高中數學說課稿模板八篇】相關文章: 精選高中數學說課稿模板五篇07-25 精選高中數學說課稿模板合集五篇07-18 精選高中數學說課稿模板集合8篇08-06 精選高中數學說課稿模板集錦九篇08-06 精選高中數學說課稿模板集合五篇08-02 精選高中數學說課稿模板合集六篇08-02 精選高中數學說課稿模板集錦7篇08-01 精選高中數學說課稿模板合集八篇07-30 精選高中數學說課稿模板匯總9篇07-29高中數學說課稿 篇8