有關數學說課稿初中集錦七篇
作為一名老師,通常會被要求編寫說課稿,說課稿有助于教學取得成功、提高教學質量。那要怎么寫好說課稿呢?下面是小編為大家收集的數學說課稿初中7篇,歡迎閱讀,希望大家能夠喜歡。
數學說課稿初中 篇1
一、教材分析
。ㄒ唬┙滩牡匚
這節課是九年制義務教育初級中學教材北師大版七年級第二章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
(二)教學目標
1、知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
2、過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。
3、情感態度與價值觀: 激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。
。ㄈ┙虒W重點
經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
教學難點:用面積法(拼圖法)發現勾股定理。
突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。
二、教法與學法分析
學情分析:
七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。
另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.
教法分析:
結合七年級學生和本節教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。
把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。
三、教學過程設計
(一)創設情境,提出問題
。1)圖片欣賞勾股定理數形圖
1955年希臘發行美麗的勾股樹
20xx年國際數學的一枚紀念郵票
大會會標
設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。
(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?
設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節。
。ǘ⿲嶒灢僮髂P蜆嫿
1、等腰直角三角形(數格子)
2、一般直角三角形(割補)
問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?
設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想。
問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)
設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。
通過以上實驗歸納總結勾股定理。
設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊—— 一般的認知規律。
。ㄈ┗貧w生活應用新知
讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。
(四)知識拓展鞏固深化
基礎題,情境題,探索題。
設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展。知識的運用得到升華。
基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?
設計意圖:這道題立足于雙基.通過學生自己創設情境 ,鍛煉了發散思維。
情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?
設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。
探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。
設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力。
。ㄎ澹└形蚴斋@布置作業
這節課你的收獲是什么?
作業:
1、課本習題2.1
2、搜集有關勾股定理證明的資料。
四、板書設計
探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么
設計說明:
1、探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法。
2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。
圖文搜集自網絡,如有侵權,請聯系刪除。
鐵樹老師面試輔導,喜馬拉雅app—主播—教師面試大雜燴
數學說課稿初中 篇2
一、教材分析
本節內容是蘇科版數學八年級上冊第一章第一節第1課時,本節立足于學生已有的生活經驗和初步的數學活動經歷,從觀察生活中的軸對稱現象開始,從整體的角度認識軸對稱的特征;同時與圖形的三種運動(平移、翻折、旋轉)之一的“翻折”有著不可分割的聯系,通過對這一節課的學習,既可以讓學生感受圖形的三種基本運動中“翻折”在幾何知識中的作用,又為學生后繼學習對稱變換、中心對稱和中心對稱圖形及平行四邊形的相關知識等做好充分準備;同時這一節也是聯系數學與生活的橋梁。
二、教學目標:
根據上述教材分析,考慮到學生已有的認知結構和心理特征,制定如下教學目標:
1、通過具體實例理解軸對稱與軸對稱圖形的概念;能夠認識軸對稱和軸對稱圖形,并能找出對稱軸;知道軸對稱與軸對稱圖形的區別和聯系。
2、經歷觀察生活中的軸對稱現象和軸對稱圖形,探索它們的共同特征的活動過程,發展學生的空間觀念和抽象概括能力。
3、在欣賞現實生活中的軸對稱圖形之美時,體會軸對稱在現實生活中的廣泛運用和它的豐富的文化價值;激發學生學習欲望,主動參與數學學習活動。
三、教學重點、難點:
依據教學目標,我認為本節課的重點是:軸對稱與軸對稱圖形概念的區別與簡單運用。 難點是:軸對稱與軸對稱圖形之間的聯系和區別.
四、教法、學法
為突出重點、突破難點,使學生能達到本節設定的教學目標,本節課我將引導學生經歷觀察、操作等活動過程,在活動過程中給學生充分的自主探究交流的空間,讓學生進行充分的討論、交流、合作、大膽表述,讓學生真正成為學習的主人。
五、教學過程:
根據以上分析,下面我具體談一談本節課的教學過程. 探究活動(一):軸對稱圖形
1、激趣導入、感受生活(用多媒體演示生活中的有關畫面) 圖片欣賞(課件):考考你的觀察力,這一醒目的標題,激起學生的好勝心,讓學生邊觀察邊思考:這些圖片有什么共同特征?這一設計遵循教學要貼近生活實際的原則,學生仔細觀察后,能發現這些圖形都是對稱。然后,教師適時提出問題:這些圖形是如何對稱?怎樣才能使對稱的部分重合呢?讓學生觀察、猜想、探究、討論,教師可以適當地引導,讓學生發現:把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。使學生感受到生活中處處有數學數學就在我們身邊,激發學生學習數學的興趣。
2、活動探究形成概念:實驗探究:把一張紙對折剪出一個圖案(折痕處不要完全剪斷),再打開這張對折的紙,剪出一個美麗的圖案,請同學模仿老師的方法試一試。在欣賞、感知軸對稱的基礎上,學生肯定急于了解這些圖形到底美在哪里。因此我設置了剪紙活動,讓學生通過動手實踐來創造美,在操作中感知軸對稱圖形的概念。而后再對比上一活動中部分圖案,互相交流發現它們的共同的特征“存在直線——將其折疊——互相重合”。從而合作歸納得出概念,教師板書概念。
3、聯系實際舉出幾個軸對稱圖形實例,并說出對稱軸(附課件)
學生根據自己的生活經驗,說出符合條件的圖形,讓學生體會軸對稱圖形在生活中的廣泛存在,生活中的許多軸對稱圖形,他們不但體現了一種對稱美,還蘊涵一定的科學道理,你們知道嗎?①表盤的對稱保證了走時的均勻性②飛機的對稱使飛機能夠在空中保持平衡;③人眼睛的對稱使人觀看物體能夠更加準確全面;④雙耳的對稱能使聽到聲音具有較強的立體感……
4、綜合練習,發散思維: 這組習題的設計有圖形、數學……挖掘了生活右多種圖案,加強了學科間的滲透與學科間的整合,讓學生在相互爭論、補充、交流中尋找知識的答案,體會學習的樂趣。
探究活動(二):軸對稱
1、動手操作,引入新知
將一張紙對折后,用針尖在紙上扎出如圖所示的圖案,觀察所得圖案。位于折痕兩側的部分有什么關系?再觀察教材119頁圖14.1-3,看看每對圖形有什么共同特征?每一個圖案是由幾個圖形構成的?因為學生已經了解到軸對稱圖形的概念,他們可能會錯誤地認為兩個圖形成軸對稱和軸對稱圖形都是對稱,沒有什么差別。所以先運用動手實踐,進行剪紙,借助人的各種感官認識,突出兩個圖形成軸對稱是指“兩個圖形重合”這一特點。按照“存在直線——將其折疊——兩圖形重合”這條主線,在老師的引導下,學生得出兩個圖形成軸對稱、對稱點的概念。教師板書概念。
2、鞏固練習,應用提高(課件)對所學的知識加以理解和鞏固
3、列舉實例,展示才華 舉出生活中成軸對稱的例子,加深對軸對稱的理解。
活動(三):歸納總結 觀察下面兩個圖形,說說你的發現。 對比軸對稱與軸對稱圖形:(列出表格,加深印象) 軸對稱 軸對稱 軸對稱 軸對稱圖形 是兩個 兩個圖形之間的關系 是一個 一個圖形形本身具有的特性 對折后 兩個圖形完全重合 翻折后 與圖形的另一半完全重合 區別:軸對稱指的是“兩個”圖形之間的對稱關系,而軸對稱圖形是指“一個”圖形具有的對稱性質。
聯系:①都是用對折、翻折180°圖形重合來定義的;
、趦烧呖上嗷マD化,如果把軸對稱的兩個圖形看成是一體的,那么這“一個”圖形就是軸對稱圖形,反過來,如果把一個軸對稱圖形互相對稱的兩部分看成是兩個圖形,那么這“兩個”圖形是軸對稱的。這里滲透整體與部分的辨證關系,進一步發展學生抽象思維能力。
活動(四):識別圖形、感受對稱美
。1)、欣賞圖片,體會軸對稱所營造的對稱美。
。2)、在計算器顯示的數字0至9中,有哪些是軸對稱的?許多漢字都是軸對稱圖形,如:田、日、曰、中、申、王等等。各公司、企業的商標中有許多軸對稱實例和軸對稱圖形,如聯想,聯合證券,湘財證券,中國工商銀行,中國銀行;各品牌汽車的車標中有許多都是軸對稱圖形,如奧迪,韓國現代,本田,富康,歐寶,寶馬;矩形、菱形、正方形、等邊三角形等都是軸對稱圖形;線段也是軸對稱圖形,線段的垂直平分線就是它的對稱軸。
強調:圖形的對稱軸是直線,不是線段、射線,而是線段、射線所在的直線。比如學生容易認為角平分線是角的對稱軸,等腰三角形底邊上的高是它的對稱軸,可以很好達到糾正錯誤的功效。其次掌握角、等腰三角形各有一條對稱軸,長方形有兩條,等邊三角形有三條,正方形有四條對稱軸,而圓形是最特殊的軸對稱圖形,有無數條對稱軸,所以它的對稱性應用最廣泛。這樣可以使學生運用圖形的對稱性解決今后一些相關問題。
活動(五):動手操作、積極實踐、創造圖形
。1)、在給出軸對稱圖形的一半的基礎上,讓學生在對稱軸的另一邊畫出另一半,成為一個完整的軸對稱圖形。由簡到難,層層第進。
。2)、讓學生發揮自己的想象力和創造力,用自己的雙手創造一個美麗的軸對稱圖形。
。ㄟ@個部分的設計,具有開放性,能充分發揮學生的想象力和創造力、動手能力、使學生成為學習的真正主人,給了學生自我表現、自我創造的空間,有利于培養學生積極的學習態度和學數學的親切感,也有利于培養學生對美的感受能力。)
。赫n堂小結
。1)、本節課學到了哪些知識?
(軸對稱和軸對稱圖形的定義;軸對稱圖形的性質;我們所學的多邊形中有哪些是軸對稱圖形;軸對稱圖形的應用。)
。2)、談談你對本節課學習的體會與困惑。
。ㄆ撸鹤鳂I設計
發揮你們的想象,利用本節所學的知識,為我們班設計一個班徽,要求設計的圖案是軸對稱圖形或成軸對稱,并有一定寓意。這是一道富有開放性、趣味性和挑戰性的作業題,給學生提供發揮想象力和創造力的平臺,使學生的活動由課內走向生活。
以上是我對本節課的見解,不足之處敬請各位評委諒解 ! 謝謝!
數學說課稿初中 篇3
各位評委、各位老師:
你們好!今天我要為大家講的課題是《矩形的判定》,根據新課標理念,對應本節,我將以教什么、怎樣教以及為什么這樣教為思路,從教材分析、教學目標分析、教學策略分析、教學過程分析四個方面加以說明。
一、教材分析(說教材):
①教材所處的地位和作用:本節教材是初中一年級第二冊,第19章《四邊形》的第二節的內容,是初中教學的重要內容之一。一方面這是在學習了不等式的基礎上,對不等式的進一步深入和拓展;另一方面,又為學習不等式組等知識奠定了基礎,是進一步研究不等式的工具性內容。因此我認為本節起著承前啟后的作用。
、诮虒W目標:
1、通過探索和交流使學生逐步得出矩形的判定方法,使學生親身經歷知識發生發展的過程,并會用判定方法解決相關的問題。
2、通過探究中的猜想、分析、類比、測量、交流、展示等手段,讓學生充分體驗得出結論的過程,讓學生在觀察中學會分析,在操作中學習感知,在交流中學會合作,在展示中學會傾聽。培養學生合情推理能力和邏輯思維能力,使學生在學習中學會學習。
3、使學生經歷探究矩形判定的過程,體會探索研究問題的方法,使學生在數學活動中獲取成功的體驗,增強自信心。
、劢虒W重點、難點:教學重點:掌握矩形的判定方法及證明過程教學難點:矩形判定方法的證明以及應用
下面為了講清重點和難點,使學生達到本節課的教學目標,我再從教法和學法上談談:
二、教學策略(說教法):
1、教學手段:通過動手實踐、合作探索、小組交流,培養學生的的邏輯推理、動手實踐等能力。
2、教學方法及其理論依據:通過探索與交流,逐漸得出矩形的判定定理,使學生親身經歷知識的發生過程,并會運用定理解決相關問題。通過開放式命題,嘗試從不同角度尋求解決問題的方法。
三、教學過程環節一:
創設情境、導入新課
通過上節課對矩形的學習,誰能告訴我矩形是怎樣定義的?(通過對矩形定義的回顧,引出判定矩形除了定義外,還有哪些方法,導入新課。)
回顧:
1、矩形的定義:有一個角是直角的平行四邊形叫矩形
2、矩形的性質:對邊:對邊平行且相等。對角:四個角相等,都是直角。對角線:互相平分且相等。
3、平行四邊形的性質:
環節二:嘗試發現,探索新知:活動一:學生分成學習小組,限定僅用手中量角器嘗試判定課前準備好的四邊形紙板是否為矩形紙板,并說明理由。(此問題的解決以分組合作交流的形式進行,學生在探究過程中根據已有的知識積累——矩形的定義,得出矩形的判定定理一。教師以合作者的身份深入到小組中,與學生交流,了解學生的探究進程并適當給予點撥。)活動結束,由小組代表匯報交流結果,并可適當板書進行推證、講解。在此過程中,全體同學可互相補充、互相評價,培養學生的語言表達能力、推理能力。
活動二:學生分成學習小組,限定僅用直尺嘗試判定課前準備好的平行四邊形紙板是否為矩形紙板,并說明理由。(此問題的解決仍以分組合作交流的形式進行,學生在探究過程中根據已有的知識積累——矩形的判定定理一,得出矩形的判定定理二。)通過此種互動過程,讓全體學生參與其中,獲得不同程度的收獲,體驗成功的喜悅。
定理一、定理二得出后,總結矩形的三種判定方法,并對題設進行比較、區分,使學生進一步明確定理應用的條件。(學生比較,歸納。)
環節三:應用辨析,鞏固定理
總結:矩形判定方法1有一個角是直角的平行四邊形是矩形矩形判定方法2有三個角是直角的四邊形是矩形。
矩形判定方法3對角線相等的平行四邊形是矩形。為了幫助學生鞏固定理,應用定理,練習如下:
一、判斷題:
1、四個角都相等的四邊形是矩形2、對角線相等的四邊形是矩形。3、對角線互相平分且相等的四邊形是矩形。4、一組對角互補的平行四邊形是矩形。
二、填空題:
1、若四邊形ABCD的對角線AC、BD相等,且互相平分于O,則四邊形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面積為_。
2、兩條平行線被第三條直線所截,兩組同旁內角的平分線相交所成的四邊形是_形。習題設置原則及解決方法說明:
判斷題的設計加強學生對所學定理的理解和掌握,使學生能將給出的條件轉化為應用定理所需的條件,辨析判定定理的題設,以便更好地應用定理。填空題第一題是對教材例2的改編,第二題是對教材習題的改編,這兩個問題的解決分別應用所學定理,使學生能夠學習致用。這兩道題的解決方法是先采用獨立完成形式,有困難的學生可以求助老師或同學,學生互助完成,派學生代表板書講解。
環節四:開放訓練,發散思維
變式訓練
△ABC中,點O是AC邊上的一個動點,
過點O作直線MN∥BC,設MN交∠BCA的
平分線于點E,交∠BCA的外角平分線于點F。
(1)求證:EO=EF
。2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結論。
變式訓練的設置,旨在發散學生的思維,使不同層次的學生都能有所收獲,而移動、旋轉等問題也是近年中考的熱點。學生思考、討論完成,教師適當點撥,加以講解。
環節五:反思小結,體驗收獲.今天你學到了什么?談談你的收獲。再現知識,教師點評,對學生在課堂上的積極合作,大膽思考給與肯定,提出希望。
環節六:布置作業,反饋回授通過作業反饋對所學知識的掌握效果,并進一步鞏固定理,應用定理。
以上是我對本節課的理解,不足之處,請各位評委、老師指正。謝謝大家!
數學說課稿初中 篇4
尊敬的各位考官大家好,我是今天的X號考生,今天我說課的題目是《函數的概念》。
新課標指出:數學課程要面向全體學生,適應學生個性發展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課。
一、說教材
首先談談我對教材的理解,本節課的內容是函數概念。函數內容是初中數學學習的一條主線,它貫穿整個初中數學學習中。又是溝通代數、方程、、不等式、數列、三角函數、解析幾何、導數等內容的橋梁,同時也是今后進一步學習高等數學的基礎。函數學習過程經歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學習可以提高了學生的數學思維能力。
二、說學情
接下來談談學生的實際情況。新課標指出學生是教學主體,所以要成為符合新課標要求的教師,深入了解所面對的學生可以說是必修課。本階段的學生已經具備了一定分析能力,以及邏輯推理能力。所以,學生對本節課的學習是相對比較容易的。
三、說教學目標
根據以上對教材分析以及對學情的把握,我制定了如下三維教學目標:
(一)知識與技能
理解函數概念,能對具體函數指出定義域、對應法則、值域,能夠正確使用“區間”符號表示某些函數的定義域、值域。
(二)過程與方法
通過實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用進一步加深集合與對應數學思想方法。
(三)情感態度價值觀
在自主探索中感受到成功的喜悅,激發學習數學的興趣。
四、說教學重難點
我認為一節好的`數學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學重點是:函數的模型化思想,函數的三要素。本節課的教學難點是:符號“y=f(x)”的含義,函數定義域、值域的區間表示,從具體實例中抽象出函數概念。
五、說教法和學法
現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的心理特征與認知規律以問題為主線,我采用啟發法、講授法、小組合作、自主探究等教學方法。
六、說教學過程
下面我將重點談談我對教學過程的設計。
(一)新課導入
首先是導入環節,提問:關于函數你知道什么?在初中階段對函數是如何下定義的?你能否舉一個例子。從而引出本節課的課題《函數概念》。
利用初中的函數概念進行導入,拉近學生與新知識之間的距離,幫助學生進一步完善知識框架行程知識體系。
(二)新知探索
接下來是教學中最重要的新知探索環節,我主要采用講解法、小組合作、自主探究法等。
首先利用多媒體展示生活實例
(1)某山的海拔高度與氣溫的變化關系;
(2)汽車勻速行駛,路程和時間的變化關系;
(3)沸點和氣壓的變化關系。
引導學生分析歸納以上三個實例,他們之間有什么共同點,并根據初中所學函數的概念,判斷各個實例中的兩個變量之間的關系是否為函數關系。
預設:①都有兩個非空數集A、B;②兩個數集之間都有一種確定的對應關系;③對于數集A中的每一個x,按照某種對應關系f,在數集B中都有唯一確定的y值和它對應。
接下來引導學生思考通過對上述實例的共同點并結合課本歸納函數的概念。組織學生閱讀課本,在閱讀過程中注意思考以下問題
問題1:函數的概念是什么?初中與初中對函數概念的定義的異同點是什么?符號“ ”的含義是什么?
問題2:構成函數的三要素是什么?
問題3:區間的概念是什么?區間與集合的關系是什么?在數軸上如何表示區間?
十分鐘過后,組織學生進行全班交流。
預設:函數的概念:給定兩個非空數集A和B,如果按照某個對應關系f,對于集合A中任何一個數x,在集合B中都存在唯一確定的數f(x)與之對應,那么就把這對應關系f叫作定義在幾何A上的函數,記作f:A→B,或y=f(x),x∈A。此時,x叫做自變量,集合A叫做函數的定義域,集合{f(x)▏x∈A}叫作函數的值域。
函數的三要素包括:定義域、值域、對應法則。
區間:
【有關數學說課稿初中集錦七篇】相關文章:
有關數學說課稿初中模板匯總七篇07-17
有關數學說課稿初中錦集七篇07-16
有關初中音樂說課稿集錦七篇05-20
有關數學說課稿初中范文集錦9篇07-17
有關數學說課稿初中范文集錦五篇07-14
有關數學說課稿初中范文集合七篇07-21
關于數學說課稿初中七篇06-09
有關數學說課稿初中范文八篇06-10
有關數學說課稿初中合集六篇06-06