教師資格證初中數(shù)學說課稿
說課是每一個老師需要具備的基本能力,在教師資格證的考試中也是必考的一項內(nèi)容。接下來小編搜集了教師資格證初中數(shù)學說課稿,僅供大家參考,希望幫助到大家。
篇一:多項式除以單項式”說課稿
今天我說課的題目是“多項式除以單項式”。本節(jié)課選自北京師范大學出版社出版的《義務(wù)教育課程標準實驗教科書》七年級(下)。這一節(jié)課是本冊書第一章第九節(jié)第二課時的內(nèi)容。下面我就從以下四個方面一一教材分析、教材處理、教學方法和教學手段、教學過程 的設(shè)計向大家介紹一下我對本節(jié)課的理解與設(shè)計。
一、教材分析
分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學大綱的基礎(chǔ)上確定本節(jié)課的教學目標 、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。
1、多項式除以單項式在整式的運算中的地位和作用是很重要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據(jù)一些現(xiàn)實模型,把它轉(zhuǎn)化成數(shù)學問題,從而培養(yǎng)學生的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力,在解決問題的過程中了解數(shù)學的價值,發(fā)展“用數(shù)學”的信心。運算能力的培養(yǎng)主要是在初一階段完成。多項式除以單項式作為整式的運算的一部分,它是整式運算的重要內(nèi)容之一,它是整個初中代數(shù)的重要部分。
2、就第一章而言, 多項式除以單項式是本章的一個重點。整式的運算這一章,多項式除以單項式是很重要的一塊,整式的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎(chǔ)的。在整式范圍內(nèi)進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此乘法的運算是本章的關(guān)鍵,而除法又是學生接觸到的較復雜的整式的運算,學生能否接受和形成在整式的運算中轉(zhuǎn)化思考方式及推理的方法等,都在本節(jié)中。
從以上兩點不難看出它的地位和作用都是很重要的。
接下來,介紹本節(jié)課的教學目標 、重點和難點。
新課程標準是我們確定教學目標 ,重點和難點的依據(jù)。重點是多項式除以單項式的法則及其應(yīng)用。多項式除以單項式,其基本方法與步驟是化歸為單項式除以單項式,因此多項式除以單項式的運算關(guān)鍵是將它轉(zhuǎn)化為單項式除法的運算,再準確應(yīng)用相關(guān)的運算法則。
難點是理解法則導出的根據(jù)。根據(jù)除法是乘法的逆運算可知,多項式除以單項式的運算法則的實質(zhì)是把多項式除以單項式的的運算轉(zhuǎn)化為單項式的除法運算。由于 ,故多項式除以單項式的法則也可以看做是乘法對加法的分配律的應(yīng)用。
二、教材處理
本節(jié)課是在前面學習了單項式除以單項式的基礎(chǔ)上進行的,學生已經(jīng)掌握同底數(shù)冪的乘法、冪的乘方、積的乘方、同底數(shù)冪的除法等知識,因此我沒有把時間過多地放在復習這些舊知識上,而是利用學生的好奇心,采用生動形象的課件引例,讓學生自主參與,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程中,我引進了現(xiàn)代化的教學工具微機,讓學生在微機演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習,通過書上的基本練習達到訓練雙基的目的,通過變式練習達到發(fā)展智力、提高能力的目的。這些我將在教學過程 的設(shè)計中具體體現(xiàn)。而且在做練習的過程中讓學生互相提問,使課堂在學生的參與下積極有序的進行。
三、教學方法
在教學過程中,我注重體現(xiàn)教師的導向作用和學生的主體地位。本節(jié)是新課內(nèi)容的學習,教學過程 中盡力引導學生成為知識的發(fā)現(xiàn)者,把教師的點撥和學生解決問題結(jié)合起來,為學生創(chuàng)設(shè)情境,從而不斷激發(fā)學生的求知欲望和學習興趣,使學生輕松愉快地學習不斷克服學生學習中的被動情況,使其在教學過程 中在掌握知識同時、發(fā)展智力、受到教育。
四、教學過程的設(shè)計
1、回顧與思考,通過單項式除以單項式法則的復習,完成四道單項式除以單項式的練習題,為本節(jié)課探索規(guī)律,概括多項式除以單項式的法則做好鋪墊。
2、探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個嘗試練習啟發(fā)學生自主解答,使學生該過程中體會多項式除以單項式規(guī)律。由于采用了較靈活的教學手段,學生能夠積極的投入到思考問題中去,讓學生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學生對規(guī)律進行歸納總結(jié)補充,從而得出多項式除以單項式的法則。
3、例題解析,通過課件生動形象的課件,引導學生嘗試完成例題,加深對多項式除以單項式的法則的理解與應(yīng)用。
4、鞏固練習:再習題的配備上,我注意了學生的思維是一個循序漸進的過程,所以習題的配備由易而難,使學生在練習的過程中能夠逐步的提高能力,得到發(fā)展。并且采用小組合作交流形式,使課堂氣氛活躍,充分調(diào)動學生的積極性。使學生在一種比較活躍的氛圍中,解決各種問題。
5、歸納總結(jié):歸納總結(jié)由學生完成,并且做適當?shù)难a充。最后教師對本節(jié)的課進行說明。
以上是我對本節(jié)課的理解和設(shè)計。希望各位老師批評指正,以達到提高個人教學能力的目的。
篇二:《正弦定理》說課稿
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設(shè)計。
一、教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的`知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學目標:
認知目標:在創(chuàng)設(shè)的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養(yǎng)學生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標:面向全體學生,創(chuàng)造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調(diào)動學生的主動性和積極性,給學生成功的體驗,激發(fā)學生學習的興趣。
教學重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二、教法
根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學業(yè)生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發(fā)他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當?shù)奶崾竞椭笇。突破難點的方法:抓住學生的能力線聯(lián)系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點
三、學法:
指導學生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。
四、教學過程
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實踐探究,形成概念,大約用25分鐘
第三:應(yīng)用概念,拓展反思,大約用13分鐘
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)探尋特例,提出猜想
1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結(jié)實驗結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學生對結(jié)論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標法來證明
(四)歸納總結(jié),簡單應(yīng)用
1.讓學生用文字敘述正弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學習方法,注重學生的主體地位,調(diào)動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。)
(八)任務(wù)后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預習下一節(jié)內(nèi)容。
篇三:《一元二次方程》說課稿
一、教材分析:
1、教材的地位和作用
一元二次方程是中學數(shù)學的主要內(nèi)容之一,在初中數(shù)學中占有重要地位。通過一元二次方程的學習,可以對已學過實數(shù)、一元一次方程、因式分解、二次根式等知識加以鞏固,同時又是今后學習可化為一元二次方程的其它高元方程、一元二次不等式、二次函數(shù)等知識的基礎(chǔ)。此外,學習一元二次方程對其它學科有重要意義。本節(jié)課是一元二次方程的概念,是通過豐富的實例,讓學生建立一元二次方程,并通過觀察歸納出一元二次方程的概念。
2、 教學目標
根據(jù)大綱的要求、本節(jié)教材的內(nèi)容和學生的好奇心、求知欲及已有的知識經(jīng)驗,本節(jié)課的三維目標主要體現(xiàn)在:
知識與能力目標: 要求學生會根據(jù)具體問題列出一元二次方程,體會方程的模型思想,培養(yǎng)學生歸納、分析的能力。
過程與方法目標:引導學生分析實際問題中的數(shù)量關(guān)系,回顧一元一次方程的概念,組織學生討論,讓學生自己抽象出一元二次方程的概念 。
情感、態(tài)度與價值觀:通過數(shù)學建模的分析、思考過程,激發(fā)學生學數(shù)學的興趣,體會做數(shù)學的快樂,培養(yǎng)用數(shù)學的意識。
3、 教學重點與難點
要運用一元二次方程解決生活中的實際問題,首先必須了解一元二次方程的概念,而概念的教學又要從大量的實例出發(fā) 。所以,本節(jié)課的重點是:由實際問題列出一元二次方程和一元二次方程的概念。鑒于學生比較缺乏社會生活經(jīng)歷,處理信息的能力也較弱,因此把由實際問題轉(zhuǎn)化成數(shù)學方程確定為本節(jié)課的難點。
二、教法、學法:
因為學生已經(jīng)學習了一元一次方程及相關(guān)概念,所以本節(jié)課我主要采用啟發(fā)式、類比法教學。教學中力求體現(xiàn)“問題情景---數(shù)學模型-----概念歸納”的模式。但是由于學生將實踐問題轉(zhuǎn)化為數(shù)學方程的能力有限,所以,本節(jié)課借助多媒體輔助教學,指導學生通過直觀形象的觀察與演示,從具體的問題情景中抽象出數(shù)學問題,建立數(shù)學方程,從而突破難點。同時學生在現(xiàn)實的生活情景中,經(jīng)歷數(shù)學建模,經(jīng)過自主探索和合作交流的學習過程,產(chǎn)生積極的情感體驗,進而創(chuàng)造性地解決問題,有效發(fā)揮學生的思維能力。
三、教學過程設(shè)計
1、創(chuàng)設(shè)情景,引入新課
因為數(shù)學來源與生活,所以以學生的實際生活背景為素材創(chuàng)設(shè)情景,易于被學生接受、感知。通過微機演示課本中的實例,并應(yīng)用微機對其進行分析,充分顯示微機演示中的生動性、靈活性,把圖形的靜變成動,增強直觀性;同時幫助學生從實際問題中提煉出數(shù)學問題,初步培養(yǎng)學生的空間概念和抽象能力。情景分析中學生自然會想到用方程來解決問題,但所列的方程不是以前學過的,從而激發(fā)學生的求知欲望,順利地進入新課。
2、 啟發(fā)探究,獲取新知
通過上述情景分析,讓學生小組合作,列出方程。英國一位著名的數(shù)學教育心理學家曾 說:概念的教學要從大量實例出發(fā),通過實例幫助完成定義,而不是教定義。因此,我在課本的基礎(chǔ)上,又補充2個實例,而且,補充的例題所列出的方程正好是一個一次項為0,一個常數(shù)項為0 的特殊一元二次方程,這為后面概括得出一元二次方程的一般形式作準備。在學生列出方程后,對所列方程進行整理,并引導學生分析所列方程的特征,同時與一元一次方程相比較,找出兩者的區(qū)別與聯(lián)系,并類比一元一次方程的概念來得出一元二次方程的概念。由于一元二次方程的概念是本節(jié)的重點,所以在形成概念的過程中主要引導學生積極主動進行自我嘗試、自我分析、自我修正、自我反思,讓學生真正理解一元二次方程概念的內(nèi)涵:(1)是整式方程(2)只含有一個未知數(shù) (3)未知數(shù)的最高次數(shù)是2。因為任何一個一元一次方程都可以化為 “ax+b=c(a≠0)”的形式,由此類比得出一元二次方程的一般形式為“ax2+bx+c=0(a≠0)”;并由一元一次方程項及系數(shù)的概念聯(lián)想得出一元二次方程的項及系數(shù)的概念。
3、 練習反饋,應(yīng)用拓展
在這個環(huán)節(jié),我遵循鞏固與發(fā)展想結(jié)合的原則,將學生分成小組,以小組競賽活動的方式對本課知識進行鞏固。不僅調(diào)動學生學習的積極性、主動性,增強學生積極參與教學活動意識和集體榮譽感,而且還能培養(yǎng)學生的觀察能力和判斷能力。同時,對概念進行變式應(yīng)用,可以開拓學生思維,培養(yǎng)學生的創(chuàng)新意識。
4、 小結(jié)歸納,上升理性
引導學生從以下3個方面進行小結(jié),(1)本節(jié)課我們學習了哪些知識?(2)學習過程中用了哪些數(shù)學方法?(3)確定一元二次方程的項及系數(shù)時要注意什么?以培養(yǎng)學生的歸納、概括能力。
5、 作業(yè)布置
考慮帶學生在知識、技能、能力等方面的發(fā)展都不盡相同,因此,我分層次布置作業(yè),以便同時兼顧到學有困難和學有余力的學生。
四、教學評價
根據(jù)新課程標準的評價理念,在教學過程中,不僅注重學生的參與意識和學生對待學習的態(tài)度是否積極,而且注重引導學生嘗試從不同角度分析和解決問題。
【教師資格證初中數(shù)學說課稿】相關(guān)文章:
初中數(shù)學教師資格證面試真題10-06
初中數(shù)學說課稿(15篇)11-04
初中數(shù)學說課稿15篇11-04
教師資格證說課稿模板12-04
初中數(shù)學《絕對值》說課稿范文11-13