- 相關推薦
小學數學獲獎說課稿《找次品》
一、教材分析
《找次品》是人教版數學五年級下冊第七單元數學廣角的內容。實際生活生產中的“次品”有很多種差別的環境,有的是表面與及格品差別,有的是所用質料不切合標準等。這節課的學習中要找的次品是表面與及格品完全雷同,只是質量有所差別,且事先已經知道次品等到格品輕(或重),別的在全部待測物品中只有唯一的一個次品。
新課程標準中指出:培養學生精良的數學思想本領是數學講授要到達的緊張目標之一。因而新課標課本體系而有步調地滲透排泄數學思想要領,實驗把緊張的數學思想要領通過學生可以明白的簡樸情勢,接納生動風趣的事例出現出來。通過講授使學生受到數學思想要領的熏陶,形成探索數學題目標興趣與欲望,漸漸生長數學思想本領。
“找次品”的教學,旨在通過“找次品”滲透優化思想,讓學生充分感受到數學與日常生活的密切聯系。優化是一種重要的數學思想方法,運用它可有效地分析和解決問題。本節課以“找次品”這一操作活動為載體,讓學生通過觀察、猜測、試驗等方式感受解決問題策略的多樣性,在此基礎上,通過歸納、推理的方法體會運用優化策略解決問題的有效性,感受數學的魅力,培養觀察、分析、推理以及解決問題的能力。
二、學情分析
解決問題的策略研究學生已經不是第一次接觸,此前學習過的“沏茶”、“田忌賽馬”、“打電話”等都屬于這一范疇,在這幾節課的學習中,對簡單的優化思想方法、通過畫圖的方式發現事物隱含的規律等都有所滲透,學生已經具有一定的邏輯推理能力和綜合運用所學知識解決問題的能力。另外,本節課中會涉及到的 “可能”、“一定”、可能性的大小等知識點學生在此之前都已學過的。
本節課學生的探究活動中要用到天平,在以往學習等式的性質等知識時,學生對天平的結構、用法以及平衡與不平衡所反映的信息都已經有了很好的掌握。
新課程實施已有幾年的時間,幾年來,小組合作交流、自主探究的學習方式已為廣大學生所接受,成為學生比較喜愛的主要學習方式,在小組學習中學生能夠較好地分工、合作、交流,較好地完成探究任務。
三、教學目標
知識技能目標:讓學生初步認識“找次品”這類問題的基本解決手段和方法。
過程方法目標:學生通過觀察、猜測、試驗、推理等活動,體會解決問題策略的多樣性及運用優化的方法解決問題的有效性。
情感態度價值觀目標:感受到數學在日常生活中的廣泛應用,嘗試用數學的方法來解決實際生活中的簡單問題,初步培養學生的應用意識和解決實際問題的能力。
四、教學方法
1.加強學生的試驗、操作活動。本節課內容的活動性和操作性比較強,可以采取學生動手實踐、小組討論、探究的方式教學。先多給學生一些時間,讓他們充分地操作、試驗、討論、研究,找到解決問題的多種策略;顒油瓿珊笤僮寣W生分組匯報結果。
2.重視培養學生的猜測、推理能力和探索精神。引導學生從紛繁復雜的方法中,從簡化解題過程的角度,找出最優的解決策略。引導學生逐步脫離具體的實物操作,轉而采用列表、畫圖等方式進行較為抽象的分析,實現從具體到抽象的過渡。
五、教學過程
(一)情境導入
課前談話:
師:同學們,我國的國球是什么球?
生:乒乓球。
師:第29屆奧運會今年8月份將在我國舉行,如果有次品的乒乓球流人賽場,將會產生什么后果?
生:
師:可見質量檢查是多么的重要,今天我們就當小小質檢員,用我們的智慧找出不合格的產品。
[設計意圖:活躍課堂氣氛,融洽師生關系,為新課的導入作好鋪墊。]
(二)探究解決方案
1.3個球
出示3個乒乓球,說明:在這3個乒乓球中有一個次品球,它跟其他球相比外表一樣,但輕些,你能幫我找出是哪一個嗎?
學生自由發言。
師:在同學們說的這些方法中,你認為哪一種方法最好?為什么?
[設計意圖:在這一環節中,要引導學生根據次品的特點發現用天平“稱”的方法最好,知道并不需要稱出每個物品的具體質量,而只要根據天平的平衡原理對托盤兩邊的物品進行比較就可以了。]
出示天平。說說怎樣利用天平來找出這次品球呢?
學生回答后小結:可以把其中的2個分別放在天平的兩個托盤中,如果天平平衡則沒放上去的那一個輕些;如果天平不平衡則翹起一端的托盤中所放的那一個輕些。
揭示課題:在生活中常常有這樣的情況,在一些看似完全相同的物品中混著一個質量不同(輕一點或是重一點)的物品,需要想辦法把它找出來,像這一類問題我們把它叫做“找次品”,這節課我們就一起來研究如何利用天平“找次品”。板書課題:找次品
[設計意圖:數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上。在教學例1前,先以3個待測物品為起點,降低了學生思考的難度,能較順利地完成初步的邏輯推理:那就是并不需要把每個物品都放上去稱,3個物品中把2個放到天平上,無論平衡還是不平衡,都能準確地判斷出哪個是次品。只有理解了這些,后面的探究、推理活動才能順利進行。]
2.5個球
(1)獨立思考:從5球中找出那個是次品。
(2)小組合作:
(合作要求:用手模擬天平,用5個學具當乒乓球。你們是怎樣稱的?稱了幾次?組長負責作好記錄。)
(3)指名匯報,根據學生的回答同步用圖示法板書學生的操作步驟:
平衡:11次
5(2,2,1)
不平衡:2(1,1)2次
5(1,1,1,1,1)1次或2次
……
師:從這兒我們可以看出,用天平找次品的方法是多種多樣的。
[設計意圖:有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探究與合作交流是學生學習數學的重要方式。在這一環節中,讓學生動手動腦,親身經歷分、稱、想的全過程,從不同的方法中體驗解決問題策略的多樣性。但考慮到學生用天平來稱在操作上會很麻煩,以前對天平的結構、用法以及平衡與不平衡所反映的信息都已經有了很好的掌握,為了便于學生操作和節省時間,所以讓學生用手模擬天平來進行實踐探究。圖示法較為抽象,對學生來說不容易理解,在這里只是讓學生初步感知,教學時教師根據學生的回答同步板書,便于學生理解每項數據、每種符號的含義,為后面的學習打下一定的基礎。]
師:觀察板書的圖示法,思考:至少稱幾次就一定能找到這個次品呢?
[設計意圖:學生在實際的操作中,可能會出現提前找到次品的情況,如果運氣好的話稱1次就可能找到次品。在這里必須引導學生在理解“至少稱幾次就一定能找到這個次品”的含義,在此基礎上讓學生明白:當我們選用一種方法來分析的研究問題時,應注意把可能出現的結果考慮全面,才能得出正確的結論。同時也為下面的填表、探究優化策略作好準備。]
(三)探索最優策略
1.9個
師:在9個乒乓球中有一個次品(次品輕一些),用天平稱,至少稱幾次就一定能找到這個次品呢?
(1)小組分工合作:用學具擺一擺并嘗試畫圖表示擺的過程,完成下表。
(合作要求:2名同學擺學具,1名同學用圖示法作記錄,1名同學分析填表。)
乒乓球個數
怎么分
分的過程
保證找出的最少次數
[設計意圖:這一環節是本節課的重點也是難點,必須進行小組活動,發揮集體的智慧才能突破這個難點。為了保證小組活動的有效性,活動前先在小組內進行分工,使每個成員都明確自己的任務。讓學生擺學具而不再使用天平,并嘗試用圖示法記錄操作過程,是完成由具體到抽象過渡中的重要一步。]
(2)指名匯報,根據學生的回答填表并板書:
平衡3(1,1,1)
9(3,3,3)
不平衡3(1,1,1)2次
平衡1
9(4,4,1)平衡2(1,1)3次
不平衡4(1,1,2)
不平衡1
平衡1
平衡(2,2,1)
9(2,2,2,2,1)不平衡2(1,1)3次
不平衡2(1,1)
9(1,1,1,1,1,1,1,1,1)4次
……
引導觀察:用哪一種方法保證能找出次品需要稱的次數最少?
小結:平均分成3份去稱,保證能找出次品所需的次數最少。
[設計意圖:小組匯報時將學生的操作過程用圖示法板書,使學生進一步理解并初步掌握這種分析方法。待測物品數量為9個時,只有平均分成3份稱才能保證2次就找到次品,其它任何一種分法都比2次要多,這樣便于學生發現規律。]
不能平均分成3份的應該怎樣分呢?
2.10和11個
(1)全班合作:用圖示法從10個和11個乒乓球中找出一個次品。
(合作要求:將全班所有的小組分成2部分,一部分小組分析“從10個乒乓球中找出一個次品”,另一部分小組分析“從11個乒乓球中找出一個次品”。小組內先共同討論出幾種不同的分法,再2人合作選一種(組內不重復)用圖示法分析。)
(2)指名匯報,投影展示學生的分析過程。
(3)引導觀察,感知規律
(利用填寫好的表格,進行觀察分析,投影出示)
一是把待測物品分成三份;二是要分得盡量平均,能夠均分的就平均分成3份,不能平均分的,也應該使多的一份與少的一份只相差1。
[設計意圖:設計待測物品數量為10個和11個,帶領學生經歷由特殊到一般的數學分析模式,在此基礎上使學生比較全面地感知找次品這類問題的基本解決手段和方法。在這一環節中,讓學生完全脫離具體的實物操作,實現從具體形象思維到抽象邏輯思維的過渡,但考慮到學生獨立用圖示法分析仍有難度,因而采用兩個合作的方式進行。把學生分成2部分分別分析10個和11個,并要求小組內選方法時“組內不重復”,這樣能提高探究的效率,在較短的時間內把幾種情況都分析到。]
(4)你知道這是為什么嗎?你能不能對這個規律作出解釋?
[設計意圖:4-6年級學段目標中指出:在解決問題的過程中,能進行有條理的思考,能對結論的合理性作出有說服力的說明,能表達解決問題的過程,并嘗試解釋所得的結果。學生通過合作探索、歸納總結出了“找次品”的最優策略,解釋這個規律能使學生對得出結論從感性認識上升為理性認識。要想用比較少的次數找到次品,那么每稱一次都應該將次品鎖定在一個盡可能小的范圍內,因為天平有2個托盤,每稱一次不但能對放上去的2份進行推理判斷,還能對沒放上去的1份進行推理判斷,所以每稱一次保證能鎖定范圍的最小值是待測物品的三分之一左右。]
(四)拓展提高
猜測:這種方法在待測物品的數量更大時是否也成立呢?
1.假定你有81個玻璃球,其中有一個球比其它的球稍重,如果只能利用沒有砝碼的天平來斷定哪一個球重,請問你最少要稱多少次,才能保證找到較重的這個球?
2.有()瓶水,除1瓶是鹽水略重一些外,其他幾瓶水質量相同。至少稱幾次能保證找出這瓶鹽水?
請你選擇一個合適的數來解這道題,獨立用圖示法分析,驗證你的猜測是否正確。
[設計意圖:本節課中提供的歸納要領在素質上是一種不完全歸納法,對數目更大時的情況是否實用,還必要通過試驗來查驗。先讓學生舉行預測,引發學生進一步舉行歸納、推理等數學思索運動,再將“做一做”舉行得當的改編,計劃成較為開放的題目,既能滿意差別條理學生的需求,又可以用更多的數據對總結的紀律舉行驗證。要是講堂時間不容許,這一關鍵也可以作為講堂的延伸讓學生課后完成。]
【小學數學獲獎說課稿《找次品》】相關文章:
小學數學《找次品》說課稿12-22
小學數學找次品說課稿(通用6篇)05-21
人教版小學數學《找次品》教學反思11-17
獲獎的小學數學說課稿(通用8篇)10-01
找次品教學反思(精選20篇)01-18
初中數學獲獎說課稿《勾股定理》范文12-11
小學語文《海底世界》獲獎說課稿12-11
小學語文《蝸牛的獎杯》獲獎說課稿12-11
小學數學的說課稿02-04