- 相關(guān)推薦
初中數(shù)學(xué)說課稿《多邊形的內(nèi)角和》
我說課的內(nèi)容是人教版七年級(jí)(下)冊(cè)第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時(shí)。我將在新課程理念的指導(dǎo)下從以下七個(gè)方面進(jìn)行說課。
一、教材分析
多邊形的內(nèi)角和是在三角形內(nèi)角和知識(shí)基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識(shí)探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對(duì)發(fā)展學(xué)生的空間觀念和幾何直覺有很大的幫助。
二、學(xué)情分析
1、我所任教的班級(jí),大部分學(xué)生來自農(nóng)村,由于自小獨(dú)立性較強(qiáng),具有較強(qiáng)的理解能力和應(yīng)用能力,喜歡合作討論,對(duì)數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。
2、本節(jié)課讓學(xué)生通過實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對(duì)三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識(shí)。估計(jì)學(xué)生在探究任意四邊形內(nèi)角和時(shí)會(huì)想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會(huì)是學(xué)生學(xué)習(xí)的難點(diǎn),在探究的過程中教師要想辦法把難點(diǎn)分散,有利于學(xué)生對(duì)本課知識(shí)的學(xué)習(xí)和掌握。
三、教學(xué)目標(biāo)分析
新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)。
【知識(shí)與技能】
掌握多邊形的內(nèi)角和公式,并能熟練運(yùn)用。
【數(shù)學(xué)思考】
(1)通過測(cè)量,類比,推理等教學(xué)活動(dòng),探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語(yǔ)言表達(dá)能力。
(2)通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
【解決問題】
通過探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
【情感態(tài)度】
1、通過動(dòng)手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。
2、體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。并在探索過程中激發(fā)、培養(yǎng)學(xué)生的愛國(guó)主義熱情。
基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點(diǎn):
【教學(xué)重點(diǎn)】探索多邊形的內(nèi)角和公式。
【教學(xué)難點(diǎn)】探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點(diǎn),增強(qiáng)直觀效果,豐富學(xué)生的感性認(rèn)識(shí),提高課堂效率。
四、教法和學(xué)法分析
本節(jié)課借鑒了美國(guó)教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:
1.教學(xué)方法:
根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動(dòng)手,從實(shí)踐中獲得知識(shí)。整個(gè)探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。
2.學(xué)習(xí)方法:
利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
五、說教學(xué)流程
1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課
情景:請(qǐng)學(xué)生觀察“上海世博園”的宣傳視頻。
從 “情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學(xué)生的愛國(guó)主義熱情,并引導(dǎo)學(xué)生大膽提出問題,對(duì)建筑物的外觀抽象成已知的三角形、長(zhǎng)方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計(jì)這個(gè)問題的目的是因?yàn)樘剿鞫噙呅蝺?nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識(shí)“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長(zhǎng)方形的內(nèi)角和是多少?學(xué)生回答后進(jìn)入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個(gè)確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識(shí),將有助于本堂課問題的解決,也為后面習(xí)題作鋪墊。
2、環(huán)節(jié)二:合作交流、探索新知。
活動(dòng)1:
猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導(dǎo)學(xué)生從正方形、長(zhǎng)方形這兩個(gè)特殊的多邊形的內(nèi)角和,很容易猜測(cè)出四邊形的內(nèi)角和等于360度。
議一議:你是怎樣得到的?你能找到幾種方法?這個(gè)環(huán)節(jié)學(xué)生可能出現(xiàn)“度量” 、“剪拼”、“作輔助線” 等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個(gè)問題讓學(xué)生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時(shí)也要告訴學(xué)生在測(cè)量和剪拼活動(dòng)中可能會(huì)產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時(shí)間,鼓勵(lì)學(xué)生積極參與,合作交流,用自己的語(yǔ)言表達(dá)解決問題的方式方法,發(fā)展學(xué)生的語(yǔ)言表達(dá)能力與推理能力。
針對(duì)不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵(lì)學(xué)生尋找多種分割形式,深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生表達(dá)自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索,體驗(yàn)解決問題策略的多樣性。
想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u(píng)價(jià)和鼓勵(lì)。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、外、頂點(diǎn)處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。
活動(dòng)2:
做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對(duì)轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對(duì)轉(zhuǎn)化思想方法的理解,體會(huì)由簡(jiǎn)單到復(fù)雜,由特殊到一般的思想方法。
上節(jié)課我們學(xué)習(xí)了多邊形的對(duì)角線,我們來看對(duì)角線與多邊形的邊數(shù)和多邊形的內(nèi)角和之間有什么關(guān)系?
議一議:
問題1:對(duì)比上面探究四邊形內(nèi)角和的過程,你能得出五邊形的內(nèi)角和?六邊形的內(nèi)角和?
問題2:能否采用不同的分割方法來解決這些問題?
問題3:n邊形的內(nèi)角和是多少?
活動(dòng)3:
想一想:采取表格的形式,首先請(qǐng)學(xué)生找出將多邊形分割成三角形的個(gè)數(shù),再根據(jù)三角形個(gè)數(shù)求出多邊形的內(nèi)角和。學(xué)生分組討論、歸納分析并展示自己發(fā)現(xiàn)的規(guī)律,要求用已“探究”的不同多邊形來有條理地發(fā)現(xiàn)和概括出多邊形的邊數(shù)與內(nèi)角和之間的關(guān)系,水到渠成地歸納、類比推出n邊形的內(nèi)角和公式,讓學(xué)生體會(huì)從特殊到一般的思考問題的方法根據(jù)本組探究過程填寫下面表格的第二、三、四列,你能從中發(fā)現(xiàn)什么規(guī)律?
嘗試完成第五列n邊形的探究。
由于學(xué)生不熟悉完全歸納法,采取表格的形式使歸納更富條理性。為了讓學(xué)生更好的理解多邊形內(nèi)角和公式(n-2)×180°,我又鮮明的指出:N表示什么?
但是學(xué)生有可能出現(xiàn)其它的解決問題的辦法,比如:由四邊形內(nèi)角和求五邊形內(nèi)角和,由五邊形內(nèi)角和再求六邊形內(nèi)角和,依次類推,邊數(shù)每增加1條內(nèi)角和就增加 180°。但是這種方法給活動(dòng)3公式的得出帶來困難。所以教師要因勢(shì)利導(dǎo),給學(xué)生正確的評(píng)價(jià)。在探索的過程中再一次培養(yǎng)學(xué)生的推理能力和表達(dá)能力,以及選擇解決問題的最佳方法的能力。
練一練:為了使學(xué)生達(dá)到對(duì)知識(shí)的鞏固與應(yīng)用,我特地設(shè)計(jì)了一組(5個(gè))即時(shí)搶答題,通過這些題目學(xué)生當(dāng)堂訓(xùn)練、獨(dú)立計(jì)算,并根據(jù)學(xué)生都喜好競(jìng)賽的特點(diǎn),采用搶答式完成。運(yùn)用所學(xué)公式解決問題并鞏固、理解、記憶公式。
搶答:
(1)過一個(gè)多邊形一個(gè)頂點(diǎn)有10條對(duì)角線,則這是 邊形.
(2)過一個(gè)多邊形一個(gè)頂點(diǎn)的所有對(duì)角線將這個(gè)多邊形分成五個(gè)三角形,則這是 邊形.
(3)多邊形的內(nèi)角和隨著邊數(shù)的增加而 ,邊數(shù)增加一條時(shí)它的內(nèi)角和增加 度。
(4)十二邊形的內(nèi)角和等于 度。
(5)一個(gè)多邊形的內(nèi)角和等于720度,那么這個(gè)多邊形是 邊形.
3、環(huán)節(jié)三:例題講解,知識(shí)鞏固
在此,我設(shè)計(jì)了2個(gè)例題,并對(duì)教科書上的例題作了較小的改動(dòng),書上的例1簡(jiǎn)略講解,這個(gè)例題就是對(duì)四邊形的內(nèi)角和的簡(jiǎn)單應(yīng)用,對(duì)于學(xué)生來說比較簡(jiǎn)單;對(duì)于例2我把書后面的85頁(yè)習(xí)題第9題變成例題,這一道題目具有較好的典型性,特別是知識(shí)間的融會(huì)貫通,主要要求學(xué)生掌握:三角形、五邊形的內(nèi)角和,正五邊形等相關(guān)知識(shí)。
4、環(huán)節(jié)四:分組競(jìng)賽、情感升華
(1)智慧大比拼
內(nèi)容:P87的練習(xí)分成2類。
通過新穎的形式激發(fā)學(xué)生的競(jìng)爭(zhēng)意識(shí)和主動(dòng)參與活動(dòng)的熱情。學(xué)生利用當(dāng)堂所學(xué)的知識(shí)解決問題,鞏固本節(jié)知識(shí)。
(2)拓展探究
內(nèi)容:用一把剪刀,將一張正方形卡片一個(gè)角截去,剩下的卡片是一個(gè)幾邊形?它的內(nèi)角和是多少?
小組合作探究,引導(dǎo)學(xué)生分析可能的每一種截取情況,根據(jù)不同截法得出不同結(jié)論。鼓勵(lì)學(xué)生積極參與思考、大膽嘗試、主動(dòng)探討、勇于創(chuàng)新。讓學(xué)生深刻的感受到合作交流的重要性,體會(huì)成功的喜悅。
(3)情系世博
內(nèi)容:2010年5月1日世博會(huì)在上海拉開帷幕,小明為了紀(jì)念這一特殊年號(hào),他想用2010°設(shè)計(jì)一個(gè)多邊形,他的愿望能實(shí)現(xiàn)嗎?
引導(dǎo)學(xué)生利用多邊形的內(nèi)角和公式解釋小明的設(shè)想能否實(shí)現(xiàn)。讓學(xué)生感受到數(shù)學(xué)的趣味性,以及與實(shí)際生活之間的密切聯(lián)系,并激發(fā)學(xué)生的愛國(guó)之情。
5、環(huán)節(jié)五:暢所欲言、分享成果
請(qǐng)學(xué)生談自己學(xué)習(xí)過程中的收獲,并整理自己參與數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),回味成功的喜悅,形成良好的學(xué)習(xí)習(xí)慣,同時(shí)也是給學(xué)生正確地評(píng)價(jià)自己和他人表現(xiàn)的機(jī)會(huì),這也是給教者本身一個(gè)反思提高的機(jī)會(huì)。通過這個(gè)環(huán)節(jié)使學(xué)生這節(jié)課所學(xué)的知識(shí)系統(tǒng)化,從感性認(rèn)識(shí)上升為理性認(rèn)識(shí)。
6、環(huán)節(jié)六:布置作業(yè)、課后提升
(1)習(xí)題7.3第2題、第4題。
(2)選做題:用另外兩種作輔助線的方法證明多邊形內(nèi)角和定理。
采用分層布置作業(yè),讓不同水平的學(xué)生得到不同的發(fā)展,培養(yǎng)學(xué)生的思維靈活性及成就感,從而貫徹因材施教的原則。
六、評(píng)價(jià)分析
評(píng)價(jià)學(xué)生,不僅僅是一個(gè)手段和結(jié)果,它對(duì)學(xué)生的人格、個(gè)性的發(fā)展有著極其重要的作用。新課程對(duì)課程的評(píng)價(jià)應(yīng)把握形成性、發(fā)展性評(píng)價(jià)和終結(jié)性評(píng)價(jià)相結(jié)合,在實(shí)踐中我打算在課堂上從以下幾個(gè)方面進(jìn)行評(píng)價(jià):
1、評(píng)價(jià)在學(xué)習(xí)中各種能力〈如表達(dá)、想象、動(dòng)手、思維、自學(xué)能力等〉的發(fā)展情況。
2、評(píng)價(jià)學(xué)習(xí)過程中的創(chuàng)新表現(xiàn)。
3、評(píng)價(jià)在學(xué)習(xí)過程中對(duì)身邊事物、社會(huì)現(xiàn)實(shí)的關(guān)注程度。
評(píng)價(jià)必須最大限度地考慮最終結(jié)果,要以培養(yǎng)學(xué)生的榮譽(yù)感、自尊心和進(jìn)取心為目的,使其產(chǎn)生獲取成功的動(dòng)力。
七、說板書設(shè)計(jì)
最后,我的板書設(shè)計(jì)力求簡(jiǎn)潔明了,便于學(xué)生觀察比較、歸納總結(jié),并體現(xiàn)教師的示范作用,突出本堂課的重難點(diǎn),及主要的思想方法。
板書設(shè)計(jì):
多邊形的內(nèi)角和
以上是我對(duì)本節(jié)課的設(shè)計(jì)說明,從說教材、說學(xué)情、說教法、說學(xué)法、說教學(xué)程序上說明這節(jié)課“教什么”和“怎么教”,并且闡明了“為什么要這樣教.我的說課到此結(jié)束,謝謝大家。
【初中數(shù)學(xué)說課稿《多邊形的內(nèi)角和》】相關(guān)文章:
初中數(shù)學(xué)的說課稿12-02
初中數(shù)學(xué)說課稿06-10
初中數(shù)學(xué)《數(shù)軸》說課稿06-25
初中數(shù)學(xué)說課稿03-11
初中數(shù)學(xué)《數(shù)軸》說課稿11-23
經(jīng)典初中數(shù)學(xué)說課稿11-09
初中數(shù)學(xué)面試說課稿11-20