1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 2016考研數學:函數與極限定理匯總

        發布時間:2017-09-16 編輯:bin

          【摘要】在暑期完成第一輪基礎考點的復習之后,9月份開始需要對考研數學所考的定理定義進行必要的匯總。本文為同學們整理了高數定理定義匯總。

          1、函數的有界性

          在定義域內有f(x)≥K1則函數f(x)在定義域上有下界,K1為下界;如果有f(x)≤K2,則有上界,K2稱為上界。函數f(x)在定義域內有界的充分必要條件是在定義域內既有上界又有下界。

          2、函數的單調性、奇偶性、周期性

          3、數列的極限

          定理(極限的唯一性)數列{xn}不能同時收斂于兩個不同的極限。

          定理(收斂數列的有界性)如果數列{xn}收斂,那么數列{xn}一定有界。

          如果數列{xn}無界,那么數列{xn}一定發散;但如果數列{xn}有界,卻不能斷定數列{xn}一定收斂,例如數列1,-1,1,-1,(-1)n+1…該數列有界但是發散,所以數列有界是數列收斂的必要條件而不是充分條件。

          定理(收斂數列與其子數列的關系)如果數列{xn}收斂于a,那么它的任一子數列也收斂于a。

          如果數列{xn}有兩個子數列收斂于不同的極限,那么數列{xn}是發散的,如數列1,-1,1,-1,(-1)n+1…中子數列{x2k-1}收斂于1,{xnk}收斂于-1,{xn}卻是發散的;同時一個發散的數列的子數列也有可能是收斂的。

          4、函數的極限

          函數極限的定義中0<|x-x0|表示x≠x0,所以x→x0時f(x)有沒有極限與f(x)在點x0有沒有定義無關。

          定理(極限的局部保號性)如果lim(x→x0)時f(x)=A,而且A>0(或A<0),就存在著點那么x0的某一去心鄰域,當x在該鄰域內時就有f(x)>0(或f(x)>0),反之也成立。

          函數f(x)當x→x0時極限存在的充分必要條件是左極限右極限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等則limf(x)不存在。

          一般的說,如果lim(x→∞)f(x)=c,則直線y=c是函數y=f(x)的圖形水平漸近線。如果lim(x→x0)f(x)=∞,則直線x=x0是函數y=f(x)圖形的鉛直漸近線。

          5、極限運算法則

          有限個無窮小之和也是無窮小;有界函數與無窮小的乘積是無窮小;常數與無窮小的乘積是無窮小;有限個無窮小的乘積也是無窮小;

          如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b。

          6、極限存在準則

          兩個重要極限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1。

          夾逼準則如果數列{xn}、{yn}、{zn}滿足下列條件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,對于函數該準則也成立。

          單調有界數列必有極限。

          7、函數的連續性

          設函數y=f(x)在點x0的某一鄰域內有定義,如果函數f(x)當x→x0時的極限存在,且等于它在點x0處的函數值f(x0),即lim(x→x0)f(x)=f(x0),那么就稱函數f(x)在點x0處連續。

          不連續情形:1、在點x=x0沒有定義;2、雖在x=x0有定義但lim(x→x0)f(x)不存在;3、雖在x=x0有定義且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)時則稱函數在x0處不連續或間斷。

          如果x0是函數f(x)的間斷點,但左極限及右極限都存在,則稱x0為函數f(x)的第一類間斷點(左右極限相等者稱可去間斷點,不相等者稱為跳躍間斷點)。非第一類間斷點的任何間斷點都稱為第二類間斷點(無窮間斷點和震蕩間斷點)。

          有限個在某點連續的函數的和、積、商(分母不為0)是個在該點連續的函數。

          如果函數f(x)在區間Ix上單調增加或減少且連續,那么它的反函數x=f(y)在對應的區間Iy={y|y=f(x),x∈Ix}上單調增加或減少且連續。反三角函數在他們的定義域內都是連續的。

          定理(最大值最小值定理)在閉區間上連續的函數在該區間上一定有最大值和最小值。如果函數在開區間內連續或函數在閉區間上有間斷點,那么函數在該區間上就不一定有最大值和最小值。

          定理(有界性定理)在閉區間上連續的函數一定在該區間上有界,即m≤f(x)≤M。

          定理(零點定理)設函數f(x)在閉區間[a,b]上連續,且f(a)與f(b)異號(即f(a)×f(b)<0),那么在開區間(a,b)內至少有函數f(x)的一個零點,即至少有一點ξ(a<ξ

          定理(介值定理)設函數f(x)在閉區間[a,b]上連續,且在這區間的端點處取不同的值f(a)=A,f(b)=B,那么對于A與B之間的任一數C,在開區間(a,b)內至少有一點ξ使f(ξ)=C,(a<ξ

          推論:在閉區間上連續的函數必取得介于最大值M與最小值m之間的任何值。

        最新推薦
        熱門推薦
        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>

            1.   【摘要】在暑期完成第一輪基礎考點的復習之后,9月份開始需要對考研數學所考的定理定義進行必要的匯總。本文為同學們整理了高數定理定義匯總。

                1、函數的有界性

                在定義域內有f(x)≥K1則函數f(x)在定義域上有下界,K1為下界;如果有f(x)≤K2,則有上界,K2稱為上界。函數f(x)在定義域內有界的充分必要條件是在定義域內既有上界又有下界。

                2、函數的單調性、奇偶性、周期性

                3、數列的極限

                定理(極限的唯一性)數列{xn}不能同時收斂于兩個不同的極限。

                定理(收斂數列的有界性)如果數列{xn}收斂,那么數列{xn}一定有界。

                如果數列{xn}無界,那么數列{xn}一定發散;但如果數列{xn}有界,卻不能斷定數列{xn}一定收斂,例如數列1,-1,1,-1,(-1)n+1…該數列有界但是發散,所以數列有界是數列收斂的必要條件而不是充分條件。

                定理(收斂數列與其子數列的關系)如果數列{xn}收斂于a,那么它的任一子數列也收斂于a。

                如果數列{xn}有兩個子數列收斂于不同的極限,那么數列{xn}是發散的,如數列1,-1,1,-1,(-1)n+1…中子數列{x2k-1}收斂于1,{xnk}收斂于-1,{xn}卻是發散的;同時一個發散的數列的子數列也有可能是收斂的。

                4、函數的極限

                函數極限的定義中0<|x-x0|表示x≠x0,所以x→x0時f(x)有沒有極限與f(x)在點x0有沒有定義無關。

                定理(極限的局部保號性)如果lim(x→x0)時f(x)=A,而且A>0(或A<0),就存在著點那么x0的某一去心鄰域,當x在該鄰域內時就有f(x)>0(或f(x)>0),反之也成立。

                函數f(x)當x→x0時極限存在的充分必要條件是左極限右極限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等則limf(x)不存在。

                一般的說,如果lim(x→∞)f(x)=c,則直線y=c是函數y=f(x)的圖形水平漸近線。如果lim(x→x0)f(x)=∞,則直線x=x0是函數y=f(x)圖形的鉛直漸近線。

                5、極限運算法則

                有限個無窮小之和也是無窮小;有界函數與無窮小的乘積是無窮小;常數與無窮小的乘積是無窮小;有限個無窮小的乘積也是無窮小;

                如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b。

                6、極限存在準則

                兩個重要極限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1。

                夾逼準則如果數列{xn}、{yn}、{zn}滿足下列條件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,對于函數該準則也成立。

                單調有界數列必有極限。

                7、函數的連續性

                設函數y=f(x)在點x0的某一鄰域內有定義,如果函數f(x)當x→x0時的極限存在,且等于它在點x0處的函數值f(x0),即lim(x→x0)f(x)=f(x0),那么就稱函數f(x)在點x0處連續。

                不連續情形:1、在點x=x0沒有定義;2、雖在x=x0有定義但lim(x→x0)f(x)不存在;3、雖在x=x0有定義且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)時則稱函數在x0處不連續或間斷。

                如果x0是函數f(x)的間斷點,但左極限及右極限都存在,則稱x0為函數f(x)的第一類間斷點(左右極限相等者稱可去間斷點,不相等者稱為跳躍間斷點)。非第一類間斷點的任何間斷點都稱為第二類間斷點(無窮間斷點和震蕩間斷點)。

                有限個在某點連續的函數的和、積、商(分母不為0)是個在該點連續的函數。

                如果函數f(x)在區間Ix上單調增加或減少且連續,那么它的反函數x=f(y)在對應的區間Iy={y|y=f(x),x∈Ix}上單調增加或減少且連續。反三角函數在他們的定義域內都是連續的。

                定理(最大值最小值定理)在閉區間上連續的函數在該區間上一定有最大值和最小值。如果函數在開區間內連續或函數在閉區間上有間斷點,那么函數在該區間上就不一定有最大值和最小值。

                定理(有界性定理)在閉區間上連續的函數一定在該區間上有界,即m≤f(x)≤M。

                定理(零點定理)設函數f(x)在閉區間[a,b]上連續,且f(a)與f(b)異號(即f(a)×f(b)<0),那么在開區間(a,b)內至少有函數f(x)的一個零點,即至少有一點ξ(a<ξ

                定理(介值定理)設函數f(x)在閉區間[a,b]上連續,且在這區間的端點處取不同的值f(a)=A,f(b)=B,那么對于A與B之間的任一數C,在開區間(a,b)內至少有一點ξ使f(ξ)=C,(a<ξ

                推論:在閉區間上連續的函數必取得介于最大值M與最小值m之間的任何值。