我們都知道在各個科目的學習中,對易錯知識點進行歸納總結可以有效地幫助我們的學習,在考研高數中當然也不例外。針對考研高數的學習,我們為大家帶來了2016考研高數十大高頻易錯點,希望可以更好地幫助同學們對于復習考研高數。
1.函數連續是函數極限存在的充分條件。若函數在某點連續,則該函數在該點必有極限。若函數在某點不連續,則該函數在該點不一定無極限。
2,若函數在某點可導,則函數在該點一定連續。但是如果函數不可導,不能推出函數在該點一定不連續。
3.基本初等函數在其定義域內是連續的,而初等函數在其定義區間上是連續的。
4.在一元函數中,駐點可能是極值點,也可能不是極值點。函數的極值點必是函數的駐點或導數不存在的點。
5.設函數y=f(x)在x=a處可導,則函數y=f(x)的絕對值在x=a處不可導的充分條件是:f(a)=0,f'(a)不等于0.
6.無窮小量與有界變量之積仍是無窮小量。
7.可導是對定義域內的點而言的,處處可導則存在導函數,只要一個函數在定義域內某一點不可導,那么就不存在導函數,即使該函數在其它各處均可導。
8.在求極限的問題中,極限包括函數的極限和數列的極限,但在考試中一般出的都是函數的極限,求函數的極限中,主要是掌握公式,有些不常見的公式一定要記熟,這種類型的題一般屬于簡單題,但往更難一點的方向出題的話,它會和變上限的定積分聯系在一起出題。
9.在運用兩個重要極限求函數極限的時候,一定要首先把所求的式子變換成類似于兩個重要極限的形式,其次還需要看自變量的取極限的范圍是否和兩個重要極限一樣。
10.介值定理和零點定理的巧妙運用關鍵在于,觀察和變換所要證明的式子的形式,構造輔助函數。
總的來說,高數其實不算太難,當你對它產生一種畏懼的時候,你就很難把它學好了。考試要的也是心態,有些題,本來就不屬于自己的能力范圍的,就直接放棄,否則一直纏著只會是浪費時間,其它題沒時間做,這道題又沒做出來。
考研數學講究的就是熟練,當你看到一道題的時候,首先要有一個感性的認識,對它有一個大體的把握,復習就要做到多看教材,復習的最高境界就是把教材習題化,也就是說,當你看到課本上的知識點的時候,腦中立刻會想起你曾經做過的那道題用過這個知識點,如果這個知識點要考試的話,它最有可能以什么方式呈現出來。
2016考研高數十大高頻易錯點,在上面文章中我已經進行了詳細的分析整理,希望同學們在高數學習的過程中,好好地利用我們所提供的知識。