我們都知道在各個科目的學習中,對必考知識點進行歸納總結可以有效地幫助我們的學習,在考研數學中當然也不例外。針對高等數學的學習,我們為大家帶來了2016考研高數無窮級數考點梳理,希望可以更好地幫助同學們學習考研高數。
無窮級數內容數二考生不要求掌握。
1、考試內容
(1)常數項級數的收斂與發散的概念;
(2)收斂級數的和的概念;
(2)級數的基本性質與收斂的必要條件;
(3)幾何級數與級數及其收斂性;
(4)正項級數收斂性的判別法;
(5)交錯級數與萊布尼茨定理;
(6)任意項級數的絕對收斂與條件收斂;
(7)函數項級數的收斂域與和函數的概念;
(8)冪級數及其收斂半徑、收斂區間(指開區間)和收斂域;
(9)冪級數的和函數;
(10)冪級數在其收斂區間內的基本性質;
(11)簡單冪級數的和函數的求法;
(12)初等函數的冪級數展開式;
(13)函數的傅里葉(Fourier)系數與傅里葉級數;
(14)狄利克雷(Dirichlet)定理;
(15)函數在2016考研數學大綱“無窮級數”考點和?碱}型上的傅里葉級數;
(16)函數在2016考研數學大綱“無窮級數”考點和常考題型上的正弦級數和余弦級數。(其中13-16只要求數一考生掌握,數三考試不要求掌握)。
2、考試要求
(1)理解常數項級數收斂、發散以及收斂級數的和的概念,掌握級數的基本性質及收斂的必要條件;
(2)掌握幾何級數與級數的收斂與發散的條件;
(3)掌握正項級數收斂性的比較判別法和比值判別法,會用根值判別法;
(4)掌握交錯級數的萊布尼茨判別法;
(5)了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系;
(6)了解函數項級數的收斂域及和函數的概念;
(7)理解冪級數收斂半徑的概念、并掌握冪級數的收斂半徑、收斂區間及收斂域的求法;
(8)了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求一些冪級數在收斂區間內的和函數,并會由此求出某些數項級數的和;
(9)了解函數展開為泰勒級數的充分必要條件;
(10)掌握2016考研數學大綱“無窮級數”考點和?碱}型的麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數間接展開成冪級數;
(11)了解傅里葉級數的概念和狄利克雷收斂定理,會將定義在上的函數展開為傅里葉級數,會將定義在上的函數展開為正弦級數與余弦級數,會寫出傅里葉級數的和函數的表達式.(其中11只要求數一考生掌握,數二、數三考試不要求掌握)
3、?碱}型
(1)判定級數的斂散性;
(2)求冪級數的收斂域和收斂半徑;
(3)把函數展開成冪級數;
(4)求冪級數的和函數;
(5)特殊的常數項級數的求和;
(6)把函數展開成傅立葉級數、正弦級數、余弦級數;
(7)狄利克雷定理
2016考研高數無窮級數考點梳理為大家帶來過了,這些考點都是考試的重要知識點,希望我們能夠多在這些知識點上下功夫,對我們取得好成績有幫助。