考研數學解題思維定理
馬克思主義哲學認為,世間萬物存在或者運動都是有規律可循的。掌握了規律,認識事物就會更加地簡便和透徹。同樣,運用到考研上,掌握出題者的規律就會了解各種題型,了解各種題型的解題思路,就會更快捷地獲得高分。那么,在考研數學的解題思路上有哪些更快捷的定理呢?讓我們一起來看一下。
高等數學部分
1.在題設條件中給出一個函數f(x)二階和二階以上可導,“不管三七二十一”,把f(x)在指定點展成泰勒公式。
2.在題設條件或欲證結論中有定積分表達式時,則“不管三七二十一”先用積分中值定理對該積分式處理一下。
3.在題設條件中函數f(x)在[a,b]上連續,在(a,b)內可導,且f(a)=0或f(b)=0或f(a)=f(b)=0,則“不管三七二十一”先用拉格朗日中值定理處理。
4.對定限或變限積分,若被積函數或其主要部分為復合函數,則“不管三七二十一”先做變量替換使之成為簡單形式f(u)。
線性代數部分
1.題設條件與代數余子式Aij或A*有關,則立即聯想到用行列式按行(列)展開定理以及AA*=A*A=|A|E 。
2.若涉及到A、B是否可交換,即AB=BA,則立即聯想到用逆矩陣的定義去分析。
3.若題設n階方陣A滿足f(A)=0,要證aA+bE可逆,則先分解出因子aA+bE再說。4.若要證明一組向量a1,a2,…,as線性無關,先考慮用定義。
5.若已知AB=0,則將B的每列作為Ax=0的解來處理。
6.若由題設條件要求確定參數的取值,聯想到是否有某行列式為零。
7.若已知A的特征向量ζ0,則先用定義Aζ0=λ0ζ0處理。
8.若要證明抽象n階實對稱矩陣A為正定矩陣,則用定義處理。
概率與數理統計解題部分
。保绻蟮氖侨舾墒录小爸辽佟庇幸粋發生的概率,則馬上聯想到概率加法公式;當事件組相互獨立時,用對立事件的概率公式。
。玻艚o出的試驗可分解成( 0-1)的n重獨立重復試驗,則馬上聯想到Bernoulli試驗,及其概率計算公式。
。常裟呈录前殡S著一個完備事件組的發生而發生,則馬上聯想到該事件的發生概率是用全概率公式計算。關鍵:尋找完備事件組。
。矗纛}設中給出隨機變量 X ~ N 則馬上聯想到標準化 ~ N(0,1)來處理有關問題。
。担蠖S隨機變量( X,Y)的`邊緣分布密度 的問題,應該馬上聯想到先畫出使聯合分布密度 的區域,然后定出X的變化區間,再在該區間內畫一條//y軸的直線,先與區域邊界相交的為y的下限,后者為上限,而的求法類似。
。叮蠖S隨機變量( X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應該馬上聯想到二重積分 的計算,其積分域D是由聯合密度 的平面區域及滿足Y≥g(X)或(Y≤g(X))的區域的公共部分。
。罚婕 n次試驗某事件發生的次數X的數字特征的問題,馬上要聯想到對X作(0-1)分解。即令
。福睬蠼飧鞲怕史植家阎娜舾蓚獨立隨機變量組成的系統滿足某種關系的概率(或已知概率求隨機變量個數)的問題,馬上聯想到用中心極限定理處理。
。梗 為總體 X的一組簡單隨機樣本,則凡是涉及到統計量 的分布問題,一般聯想到用 分布,t分布和F分布的定義進行討論。
【考研數學解題思維定理】相關文章:
2017考研數學的思維定勢10-03
考研數學的8大解題方法10-03
2017考研數學致勝的8大解題法09-27
高中數學說課稿《正弦定理》范文01-23
高中數學必修五《正弦定理》說課稿10-29
高中數學說課稿《正弦定理》4篇07-13
考研數學經驗分享10-03
2017年考研政治選擇題解題技巧10-25
2017年考研英語閱讀解題思路與答題技巧10-25