- 相關推薦
PTN網絡技術現狀及發展
PTN(分組傳送網)是指這樣一種光傳送網絡架構和具體技術。近年來,PTN網絡技術正越來越多的得到廣泛應用。下面是YJBYS小編為大家搜索整理的關于PTN網絡技術現狀及發展,歡迎參考閱讀,希望對大家有所幫助!想了解更多相關信息請持續關注我們應屆畢業生培訓網!
一、PTN網絡技術現狀
1、技術體制
PTN的最初設想是用一個有連接的、支持類似SDH端到端性能管理的網絡,來滿足網絡從當前向下一代平滑演進的能力,滿足IP類業務的高帶寬需求,出于這個目的,業界分別從IEEE 802.1系列的二層以太網技術和ITU-T 6.8110系列的三層IP交換技術分別進行改良,形成了PBB-TE(PBT)和MPLS-TP兩大主流技術體制。
2、標準情況
PTN的技術標準分別由三大組織共同制訂:①IEEE主導以太網技術,重點關注增強以太網如PBB、PBB-TE;②IETF主導開發IP/MPLS協議,重點關注MPLS-TP、PWE3、L2VPN(VPLS);③ITU-T曾主導開發T-MPLS, 目前重點關注MPLS-TP G.8110.1系列, EOT G.8010 系列,集中在框架和需求制訂。
MPLS-TP技術的前身是傳送—多協議標簽交換(T-MPLS),ITU-T自2005年開始開發T-MPLS技術標準,已開發出包括體系架構、設備、保護倒換和操作管理維護(OAM)的一整套標準,從2008年4月開始,ITU-T和IETF正式合作開發MPLS-TP標準,IETF主導協議開發,ITU-T負責傳送需求。
截至目前PTN的相關技術標準仍在不斷完善中,目前已批準公布的標準有:G.8110.1v1MPLS-TP 層網絡架構;G.7712DCN 網絡架構和規范;G.8101v1MPLS-TP 術語和定義;G.8113MPLS-TP 層網絡OAM 機制(分為傳送網、IP/MPLS 兩種應用場景);G.8121MPLS-TP 設備功能特性;G.8112MPLS-TP 網絡接口;G.8151MPLS-TP 網元管理規范;G.8131MPLS-TP 線性保護;G.8132MPLS-TP 環網保護;G.8121am1 G.8121的增補1;G.8152MPLS-TP 網元信息管理模型。
近年來,我國在基于MPLS-TP的PTN標準研制和產業應用方面已處于國際前列。中國通信標準化協會(CCSA)TC6已積極組織會員開展了PTN的通信行業標準制定工作,截至2012年12月,CCSA(中國通信標準化協會)已發布的標準有:分組傳送網PTN總體技術要求;分組傳送網PTN設備技術要求;分組傳送網PTN測試方法;分組傳送網(PTN)互通技術要求。
總的來說,MPLS-TP 的數據平面、管理平面和OAM 方面的需求和框架標準相對成熟穩定,控制平面的草案在研究開發之中,目前MPLS-TP 標準的主要分歧在OAM 和保護方面,已分化為以PTN 和IP/MPLS擴展為代表的兩種技術方案,實際上是傳送和數據兩個產業利益矛盾在國際標準上的突出體現,最終以OAM的兩種方案均列入標準,標準化工作才得以順利推動。
二、PTN主要關鍵技術原理及分析
1、網絡內保護
網絡內保護分為線性保護和環網保護兩類。
線性保護是指在工作路徑失效后,線性保護會自動切換至保護路徑實現業務端到端的保護過程,線性保護按照保護路徑的不同的又可分為1+1、1:1、1:N,幾種方式優缺點見下表:
PTN技術標準定義了兩種環網保護機制:Wrapping 和Steering 。其中Wrapping保護類似于SDH的復用段保護,它只在受故障影響的相鄰兩個節點執行保護動作,讓所有業務通過環網的保護帶寬繞開故障點,然后在故障點的另一端返回工作帶寬。Steering保護與此相反,所有網元都需要判斷它的業務連接是否受到故障點的影響,如果受損,則本地上環的業務就近橋接到保護帶寬,業務的目的端也就近倒換到保護帶寬上。
線性保護和環網保護是網絡內保護的重要方式,根據組網環境的不同選擇不同的保護方式,可以有效保障業務通信的可靠性,兩者也可以互相補充,一般在環網架構下,首選環網保護,針對特別重要的業務也可以另行配置線性保護,雙重保護通過 Hold-off機制協同動作,可以為業務提供更可靠的服務。
2、同步技術
同步包含頻率同步和時間同步兩個概念。
1.同步以太網
PTN網絡中一般采用同步以太網技術實現頻率同步。
同步以太網技術是基于物理層的同步技術,主要是以太網鏈路碼流恢復時鐘的技術。以太網通過物理層芯片從串行數據流中恢復出發送端的時鐘,在發送側將高精度時鐘灌入以太網物理層(PHY)芯片,PHY芯片利用高精度的時鐘將數據發送出去,接收側的PHY芯片將時鐘恢復出來,然后判斷各個接口上報的時鐘質量,從其中選擇一個精度最高的,將系統時鐘與其同步息的同時,也要將時鐘質量等級信息上報。同步以太網接口就通過以太網同步消息信道(ESMC)傳遞專有的攜帶時鐘信息的同步狀態信息(SSM)報文,來告知下游設備,從而實現全網同步。
2.IEEE 1588 V2技術
隨著PTN技術在移動回傳等網絡中的應用,應用環境提出了更為精確的時間同步要求,例如CDMA2000中要求時鐘頻率在0.05ppm,時間同步要求為3us,TD-SCDMA中時間同步要求為1.5us.
目前PTN網絡中廣泛采用IEEE 1588技術實現時間同步,IEEE 1588 V2標準的全稱是“網絡測量和控制系統的精確時鐘同步協議標準”簡稱為精確定時協議(PTP)。
PTP本質上是主從同步系統,通過采用主從時鐘方式,對時間進行信息編碼,這樣可以記錄同步時鐘信息的發出時間和接收時間,并且給每一條信息加上時間戳,接收方就可以通過時間記錄計算出傳輸時網絡中的延時和主從時鐘的偏移量,從而修正從設備時鐘,使之與主時鐘同步。
雖然PTP支持頻率和時間同步,但是由于IEEE 1588采用軟件層面的算法,在來回傳遞報文時,頻率同步收斂性不好,而且報文經過復雜的數據網絡,抖動和非對稱性的不可控導致從IEEE 1588報文中恢復的頻率和時間精確度難以保證。 所以IEEE 1588主要面向時間的同步要求,同步以太網主要面向時鐘頻率的同步要求,一般將二者結合在一起,共同實現PTN全網同步。
3.三層功能
PTN作為承載網絡,支持IP數據業務的接入及承載,需要支持三層功能以滿足IP業務的路由及轉發,目前普遍采用PTN核心層開啟三層功能。接入匯聚層采用PTN 隧道技術來實現,如圖1所示。
PTN接入匯聚層設備通過PTN隧道技術,將來自CE的IP數據接入到PTN核心層,PTN核心層節點內部實現隧道的終結,識別IP報文,根據IP報文的目的地址及接口信息,完成L2到L3 VRF的橋接功能,查找VRF路由表或者IP路由表進行報文的路由轉發處理(直接轉發到實際物理端口或添加VRF標簽),PTN核心層支持多個虛擬路由轉發實例能力,即可以提供多個VRF,不同VRF之間的路由轉發表項邏輯隔離;PTN核心層節點間路由學習可通過靜態或動態方式;靜態方式是通過網管靜態配置路由轉發表,動態方式是通過MP-BGP路由協議來動態發布和學習路由(適用于VPN路由方式)。
三、網絡技術發展分析
業務需求永遠是技術發展的驅動力,PTN的一項重要使命是為了應對即將到來的TD-LTE網絡,作為一種新的網絡架構,LTE單站網絡流量對帶寬開銷很大,網絡層次趨于網狀。
1、更高的帶寬
隨著移動互聯網時代的到來,數據業務在整個網絡流量中的比重越來越高逐漸占據主導,承載網絡需要具備帶寬可擴展以及網絡可持續性增長。
由于PTN內核基于分組傳輸,因此選用以太網承載效率最高,但是以太網最高傳輸速率遠遠小于光纖的傳輸容量(80波×40G)3.2T,在有更高傳輸帶寬要求的場合下,PTN和光網絡技術融合將是最好的選擇即POTN(PTN+OTN),也是未來技術發展最重要的方向之一。
2、更加智能
PTN是基于面向連接的技術,采用以靜態配置為主的方式建立連接,網絡的連接數與網絡節點數的平方成正比。規模越大,連接數量越多,開通和維護連接的工作量也越大,為此需要引入智能控制平面技術。通過引入智能控制平面技術可以極大地增強PTN網絡對承載業務的保護并同時增加對網絡帶寬的使用效率。能以一種極具性價比的方式為運營商提供一個強壯并高可靠的網格化PTN網絡。
3、網絡技術的融合
技術的發展是在不斷融合不斷更替,網絡技術的發展最終是受業務驅動影響,PTN技術也不例外,PTN發展歷程較為短暫,尚存在許多問題,必須吸收其他先進技術不斷完善以滿足業務需求,未來的PTN將逐步在逐步融合吸收OTN、IP/MPLS等技術特征同時,改造光傳送層向未來的分組光傳送網(P-OTN)發展,通過引入ASON智能控制平面,為用戶提供更智能化、全分組化的服務,以提供更高的帶寬和更加靈活的網絡應用。
【PTN網絡技術現狀及發展】相關文章:
PTN網絡技術的原理及分析08-16
無線網絡技術應用的現狀及發展07-20
計算機網絡技術的現狀及發展08-01
網絡技術的發展及特點01-29
淺談網絡技術的發展08-19
網絡技術產品及其發展09-09
網絡技術的特點及其發展09-17
通信工程網絡技術應用的現狀及對策07-18
現代舞的現狀及其發展11-17
我國網絡營銷的現狀及發展對策08-30