- 相關推薦
2017年八年級下冊數學期末檢測試卷
一、選擇題(每小題3分,共30分)
1、下列條件不能判定兩個直角三角形全等的是( )
A.兩條直角邊對應相等 B.有兩條邊對應相等
C.一條邊和一個銳角對應相等 D.兩個銳角對應相等
2、點C在x軸上方,y軸左側,距離x軸2個單位長度,距離y軸3個單位長度,則點C的坐標為( )
A 、( ) B、 ( ) C、 ( ) D、( )
3、如圖,平行四邊形ABCD中,∠A的平分線AE
交CD于E,AB=5,BC=3,則EC的長( ).
A 1 B 1.5 C 2 D 3
4、在我們的生活中,常見到很多美麗的圖案,下列圖案中,既是中心對稱,又是軸對稱圖形的是( )
A. B. C. D.
5、如圖,是張老師晚上出門散步時離家的距離 與時間 之間的函數圖象,若用黑點表示張老師家的位置,則張老師散步行走的路線可能是( )
6、對于函數y=-k x(k是常數,k≠0)的圖象,下列說法不正確的是( )
A.是一條直線 B.過點( ,-k) C.y隨著x增大而減小
D.經過一、三象限或二、四象限
7、我校為了了解八年級體能情況,隨機選取
30名學生測試一分鐘仰臥起坐次數,并繪制
了如圖的所示直方圖,則學生仰臥起坐次數在25~30之間的頻率為( )
(A)0.1 (B)0.17 (C)0.33 (D)0.4
8、已知一次函數y=kx+b,y隨著x的增大而減小,且kb<0,則在直角坐標系內它的大致圖象是 ( )
A. B. C. D
9、已知點P(-2,3)關于y軸的對稱點Q(a,b),則a+b的值是( )
A、1 B、-1 C、5 D、-5
10、在△ABC中,AB=12cm,AC=9cm,BC=15cm,則 等于( )
A. B. C. D.
二、填空題(每小題3分,共30分)
1、已知,如右圖,AB=AD=5,∠B=150,
CD⊥AB于C,則CD= 。
2、直角三角形中,兩銳角的角平分線相交所成的角的度數為 .
4、△ABC中,AB=6,AC=4,∠A=45°,則△ABC的面積為 .
5、如圖,在▱ABCD中,AD=8,點E、F分別
是BD、CD的中點,則EF= 。
6、一個正多邊形的一個外角是15度,求這個多邊形的全部對角線的條數是 。
7、在平面直角坐標系中,點P( , )是第二象限內的點,則 的取值范圍是 。
8、已知點 在直線 ( 為常數,且 )上,則 的值為_____.。
9、若一個直角三角形的兩邊長分別是2、4,則第三邊長為 。
10、已知△ABC的面積為36,將△ABC沿BC平移到△A´B´C´,使B´和C重合,連結AC´交A’C于D,則△C´DC的面積為________.
三、解答題:(本大題共9大題,共74分)
19.計算(本題共有2小題,每小題4分,共8分):
(1)18-22+|1-2| (2)1-x2-9x2-6x+9÷x+3x+4
20.解方程(本題共有2小題,每小題5分):
(1)3x-1-1=11-x (2)x(x-2)=3x-6
21.先化簡,再求值(本題滿分6分):a-3a-2÷(a+2-5a-2),其中a=2-3.
22. (本題滿分8分) 如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為 ▲ 時,四邊形AMDN是矩形;
、诋擜M的值為 ▲ 時,四邊形AMDN是菱形.
23. (本題滿分8分)學校為了解學生參加體育活動的情況,對學生“平均每天參加體育活動的時間”進行了隨機抽樣調查,下圖是根據調查結果繪制的兩幅不完整的統計圖.
請你根據統計圖提供的信息,解答以下問題:
(1)本次一共調查了 ▲ 名學生;
(2)將條形統計圖補充完整;
(3)若該校有2000名學生,你估計全?赡苡卸嗌倜麑W生平均每天參加體育活動的時間在“ 0.5~1小時”之間.
24. (本題滿分10分)為了保護環境,某開發區綜合治理指揮部決定購買A,B兩種型號的污水處理設備共10臺 .已知用90萬元購買A型號的污水處理設備的臺數與用75萬元購買B型號的污水處理設備的臺數相同,每臺設備價格及月處理污水量如下表所示:
污水處理設備 A型 B型
價格(萬元/臺) m m-3
月處理污水量(噸/臺) 2200 1800
(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設備的資金不超過165萬元,問采用何種購買方案可以使得每月處理污水量的噸數為最多?并求出最多噸數.
25. (本題滿分11分)如圖,在△ABC中,AB=13,BC=14,AC=15.
(1)探究:如圖1,作AH⊥BC于點H,則AH= ▲ ,△ABC的面積S△ABC= ▲ .
(2)拓展:如圖2,點D在邊AC上(可與點A,C重合),分別過點A、C作直線BD的垂線,垂足為E,F,設BD=x,AE+CF=y.
、偾 y與x的函數關系式,并求y的最大值和最小值;
②對給定的一個x值,有時只能確定唯一的點D,請求出這樣的x的取值范圍.
26.(本題滿分13分)如圖①,將□ABCD置于直角坐標系中,其中BC邊在x軸上(B在C的左側),點D坐標為(0,4),直線MN:y=34x-6沿著x軸的負方向以每秒1個單位的長度平移,設在平移過程中該直線被□ABCD截得的線段長度為m,平移時間為t(s),m與t的函數圖像如 圖②所示.
(1)填空:點C的坐標為 ▲ ;
在平移過程中,該直線先經過B、D中的哪一點? ▲ ;(填“B”或“D”)
(2)點B的坐標為 ▲ ,a= ▲ .
(3)求圖②中線段EF的函數關系式;
(4)t為何值時,該直線平分□ABCD的面積?
【八年級下冊數學期末檢測試卷】相關文章:
小學數學下冊期末試卷09-04
八年級下冊數學期末試卷及答案10-10
三語文下冊期末試卷09-15
2017小學一年級下冊數學期末檢測試卷07-26
人教版二年級下冊數學期末檢測試卷08-10
2017年二年級下冊語文期末檢測模擬試卷09-03
2017年最新二年級下冊數學期末檢測試卷07-20
2017年三年級下冊語文期末檢測試卷07-23
2017年二年級語文下冊期末試卷檢測分析07-18