1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 視頻圖像中的車輛檢測跟蹤和分類

        時間:2024-10-27 18:46:26 理工畢業論文 我要投稿
        • 相關推薦

        視頻圖像中的車輛檢測跟蹤和分類

        摘要:介紹了一種在固定的單攝像頭拍攝的交通圖像序列中檢測、跟蹤、分類車輛的方法。該方法大致可分為三部分:抽取背景圖像和圖像分割;基于針孔模型的攝像機定標,計算透視投影矩陣;利用區域特性進行匹配跟蹤,建立目標鏈,恢復目標三維信息,采用模型匹配法對車型分類。實驗證明該方法簡單可行。

        在現代交通管理和道路規劃中,交通流量和通行車輛的類型、速度是重要的參數。自動獲取這些數據的方法大致可以分為兩類:一類是利用壓電、紅外、環形磁感應線圈等傳感器獲得車輛本身的參數, 這類方法跟蹤識別率較高,但是容易損壞,安裝也不方便;還有一類就是基于圖像處理和模式識別的方法,克服了前面一類方法的局限,由于圖像處理識別技術的進步和硬件性價比的大幅提高,有一定實用價值的系統已經出現。這些系統的使用證明;圖像處理識別車輛的方法晶趨成熟,環境適應能力較強,能長期穩定工作,但是計算量大,識別正確率不如感應線圈、激光讀卡等方法高。本文的研究屬于后者,利用安裝在高處的單個靜止攝像頭監視路面,利用運動分割與模型匹配的方法,檢測并統計多車道的車流信息。

        識別過程分三步:分割、跟蹤和車型判定。運動目標的分割常采用幅差法。在監控場合,攝像頭大多是固定的,背景基本沒有變化或者變化緩慢,可以從圖像序列中逐漸取出背景圖像,然后利用幀差法檢測出目標區域,同時還可以檢測靜止目標。由于識別過程中利用二值邊緣,所以本文在圖像分割中對輸入圖像進行了梯度二值化處理。三維空間和二維圖像平面之間映射關系的確定,采用基于針孔模型的攝像機定標來計算。對目標區域的跟蹤,采用了區域特征向量的匹配跟蹤方法,減小了運算量。由于圖像處理的方法很難提取輪數、軸距等車輛本身參數,所以在圖像車型識別中一般都采用三維模型在圖像上投影和車輛邊緣相匹配的方法。

        1 背景重建和圖像分割

        由于攝像頭固定,背景變化緩慢,因此,可以利用圖像序列逐漸恢復出背景圖像。其基本原理是:對每一個像素進行監控,如果在較長時鐘內灰度不發生明顯變化,則認為該象素屬于背景區域,將該象素灰度值復制到背景緩沖區,否則屬于前景區域。由于光照以及車輛陰影等影響,采用這種方法恢復出來的 背景圖像存在較大噪聲。因此大實驗中對原始輸入圖像進行了梯度二值化處理,然后進行背景重建。這樣可以減小陰影的干擾,加快背景重建速度。由于識別是利用邊緣信息,所以度化對后面的識別過程沒有影響。

        在得到背景邊界圖像后,利用幀差法可以分割出感興趣的目標。但是,如果目標區域和背景邊界后果合(都興趣的目標。但是,如果目標區域和背景邊界重合(值都為“1”),相減之后該目標區域被錯誤判定為背景區域(來"0")。為了減小錯誤判決區域,本文在分割時參考了相鄰兩幀的二值化幀差fdmask,判決準則如下:如果fdmask中革像開綠素為“0”,則輸入圖像和背景圖像相應像素相減;否則直接復制輸入圖像中相應的像素值。分割結果經過噪聲消除、形態學平滑邊辦、種子填充、區域標記等后續處理,就分字出了目標。

        2 攝像機定標

        在模型匹配中,需要從二維圖像恢復目標三維信息,同時將三維模型投影到圖像平面上,因此必須計算三維空間到圖像平面的投影關系矩陣。這個過程就是攝像機定標。本文采用基于針孔模型的攝像機定標方法,其基本原理是利用給定的一組三維世界的點坐標和這些點在圖像中的坐標,求解線性方程組,計算透視投影矩陣中的各個元素。透視投影矩陣如下:

        其中:(u,v)是圖像坐標,(Xw,Yw,Zw)是三維坐標,M為投影矩陣,Zc為三維空間中點到攝像機鏡頭的矢量在光主軸上的投影距離。要求解M的各個元素,通常方程組不獨立,沒有唯一解,采用近似計算的誤差羅大。在(21)式基礎上經過變形,將12階方程分拆成三個4階方程組,只需要利用4個點的投影關系,方程組的階次也只有4階,可以有效避免出現奇異矩陣,求出唯一解。由式(1)可以得出:

        另外,除了4組點的坐標之外,還需測定鏡頭主光軸的水平垂直傾角。

        3 車輛的跟蹤和分類

        在區域分割后,接下來進行區域跟蹤,利用相鄰兩幀的區域匹配從而圖像序列中建立目標鏈,跟蹤目標從進入監視范圍到駛離監視范圍的整個過程。首稱要確定區配準則。常用的圖像匹配方法有Hausdorff距離區域法和圖像互相關。這兩種方法都需要逐個含金量紗的計算。為了減小計算量,采用區域特片跟蹤法。目標區域的特征包括區域形心坐標、區域包圍矩形、區域運動速度及運動方向和區域面積。本文匹配準則采用了兩個假定:同一目標所對應區域在相鄰兩幀中面積相近;同一目標在前一幀中的區域形心加上運動速度所得到的形心預測值與后一幀中區域形心距離相近。跟蹤過程如下:

        (1)將第一幀的各個區域當作不同的目標,對各個目標區域啟動目標鏈。

        (2)根據判決準則,如果某目標鏈中的區域在當前幀找到了匹配區域,則用找到的的匹配區域特片更新該目標鏈中的區域特征。

        (3)如果在形心預測值所在位置,當前幀區域和目標鏈中區域面積相差很大,則可以認為發生了合并或者分裂現象。對目標鏈中的區域包圍矩形,在本幀查找該矩形覆蓋了幾個區域,如果多于一個區域,則認為發生了分裂現象。對分裂現象出現的新區域,啟動新目標鏈。同理,對于本幀區域的包圍矩形,查找該矩形覆蓋了幾個目標鏈中的區域,如果多于一個,則認為發生了合并現象,利用合并區域啟動新的目標鏈,同時終止那些被合并區域的目標鏈。

        (4)對于目標鏈中的區域,如果在本幀沒有與之相匹配的區域存在,則認為發生了消失現象。目標鏈并不立即終止,只有在經過數幀仍沒有找到匹配之后,才終止該目標鏈。

        (5)查找本幀是否還存在新進入的區域,如果存在,則啟動新的目標鏈。

        采用這種方法可以快速跟蹤圖像序列中的目標,同時得到車輛在監視范圍的平均速度。在計數時,只有目標在連續數幀里出現才認燭一個真正的目標區域,只有目標在連續數幀都沒有出現才認為消失,因此可以消除那些暫時消失引起的計數

        視頻圖像中的車輛檢測跟蹤和分類

        【視頻圖像中的車輛檢測跟蹤和分類】相關文章:

        模糊識別分類方法在遙感圖像混和像元分類中的應用03-07

        智能視頻監控中目標移走檢測的方法研究03-07

        基于全局運動估計的視頻圖像拼接在監控系統中的應用03-18

        基于SOPC的遠程視頻圖像監控系統的設計03-07

        智能大廈視頻圖像數字壓縮系統設計03-18

        基于HOUGH變換的雷達圖像圓檢測03-07

        基于DSP的視頻檢測和遠程控制系統設計03-20

        肺功能檢測在肺手術中的應用和地位03-08

        圖像處理中的模糊算法及實現03-13

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>