相似圖形的知識(shí)點(diǎn)總結(jié)
相似圖形的知識(shí)點(diǎn)在數(shù)學(xué)考試中考得比較多,那么相關(guān)的知識(shí)點(diǎn)有什么呢?以下是小編為大家精心整理的相似圖形的知識(shí)點(diǎn)總結(jié),歡迎大家閱讀。
相似圖形的知識(shí)點(diǎn)總結(jié)
知識(shí)點(diǎn)1.概念
把形狀相同的圖形叫做相似圖形。(即對(duì)應(yīng)角相等、對(duì)應(yīng)邊的比也相等的圖形)
解讀:(1)兩個(gè)圖形相似,其中一個(gè)圖形可以看做由另一個(gè)圖形放大或縮小得到.
(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.
(3)判斷兩個(gè)圖形是否相似,就是看這兩個(gè)圖形是不是形狀相同,與其他因素?zé)o關(guān).
知識(shí)點(diǎn)2.比例線段
對(duì)于四條線段a,b,c,d ,如果其中兩條線段的長(zhǎng)度的`比與另兩條線段的長(zhǎng)度的比相等,即(或a:b=c:d)那么這四條線段叫做成比例線段,簡(jiǎn)稱比例線段.
知識(shí)點(diǎn)3.相似多邊形的性質(zhì)
相似多邊形的性質(zhì):相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等.
解讀:(1)正確理解相似多邊形的定義,明確“對(duì)應(yīng)”關(guān)系.
(2)明確相似多邊形的“對(duì)應(yīng)”來(lái)自于書寫,且要明確相似比具有順序性.
知識(shí)點(diǎn)4.相似三角形的概念
對(duì)應(yīng)角相等,對(duì)應(yīng)邊之比相等的三角形叫做相似三角形.
解讀:(1)相似三角形是相似多邊形中的一種;
(2)應(yīng)結(jié)合相似多邊形的性質(zhì)來(lái)理解相似三角形;
(3)相似三角形應(yīng)滿足形狀一樣,但大小可以不同;
(4)相似用“∽”表示,讀作“相似于”;
(5)相似三角形的對(duì)應(yīng)邊之比叫做相似比.
知識(shí)點(diǎn)5.相似三角的判定方法
(1)定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似;
(2)平行于三角形一邊的直線截其他兩邊(或其他兩邊的延長(zhǎng)線)所構(gòu)成的三角形與原三角形相似.
(3)如果一個(gè)三角形的兩個(gè)角分別與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似.
(4)如果一個(gè)三角的兩條邊與另一個(gè)三角形的兩條邊對(duì)應(yīng)成比例,并且?jiàn)A角相等,那么這兩個(gè)三角形相似.
(5)如果一個(gè)三角形的三條邊分別與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似.
(6)直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形都相似.
知識(shí)點(diǎn)6.相似三角形的性質(zhì)
(1)對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等;
(2)對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比,對(duì)應(yīng)角平分線的比都等于相似比;
(3)相似三角形周長(zhǎng)之比等于相似比;面積之比等于相似比的平方.
(4)射影定理
【相似圖形的知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
小升初數(shù)學(xué)平面圖形的知識(shí)點(diǎn)06-25
小升初數(shù)學(xué)立體圖形的知識(shí)點(diǎn)06-16
小升初數(shù)學(xué)《立體圖形》知識(shí)點(diǎn)06-29
小升初數(shù)學(xué)平面圖形知識(shí)點(diǎn)06-28
小升初數(shù)學(xué)幾何圖形知識(shí)點(diǎn)06-27
小升初立體圖形的數(shù)學(xué)知識(shí)點(diǎn)06-29
小升初備考數(shù)學(xué)立體圖形的知識(shí)點(diǎn)06-25
小升初數(shù)學(xué)立體圖形的知識(shí)點(diǎn)備考06-25