圓的標準方程高中說課稿3篇
在教學工作者實際的教學活動中,時常需要用到說課稿,寫說課稿能有效幫助我們總結和提升講課技巧?靵韰⒖颊f課稿是怎么寫的吧!下面是小編幫大家整理的圓的標準方程高中說課稿,歡迎大家分享。
圓的標準方程高中說課稿1
一、教學背景分析
1、教材結構分析
《圓的方程》安排在高中數學第二冊(上)第七章第六節、圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用、圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用、
2、學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的、但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難、另外學生在探究問題的能力,合作交流的意識等方面有待加強、
根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3、教學目標
。1)知識目標:
①掌握圓的標準方程;
、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;
、劾脠A的標準方程解決簡單的實際問題、
。2)能力目標:
、龠M一步培養學生用代數方法研究幾何問題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
③增強學生用數學的意識、
。3)情感目標:
①培養學生主動探究知識、合作交流的意識;
、谠隗w驗數學美的過程中激發學生的學習興趣、
根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4、教學重點與難點
(1)重點:圓的標準方程的求法及其應用、
(2)難點:
、贂鶕煌囊阎獥l件求圓的標準方程;
②選擇恰當的坐標系解決與圓有關的實際問題、
為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:
二、教法學法分析
1、教法分析為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上、另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程、
2、學法分析通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解、通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓、通過應用圓的標準方程,熟悉用待定系數法求的過程、
下面我就對具體的教學過程和設計加以說明:
三、教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:
創設情境啟迪思維深入探究獲得新知應用舉例鞏固提高
反饋訓練形成方法小結反思拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖、
首先:縱向敘述教學過程
。ㄒ唬﹦撛O情境——啟迪思維
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2、7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決、一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題、用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望、這樣獲取的知識,不但易于保持,而且易于遷移、
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節、
(二)深入探究——獲得新知
問題二:
1、根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2、如果圓心在,半徑為時又如何呢?
這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程、然后再讓學生對圓心不在原點的情況進行探究、我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法、
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。
(三)應用舉例——鞏固提高
I、直接應用內化新知
問題三:
1、寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經過點,圓心在點、
2、寫出圓的圓心坐標和半徑
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備、
II、靈活應用提升能力
問題四:
1、求以點為圓心,并且和直線相切的圓的方程、
2、求過點,圓心在直線上且與軸相切的圓的方程、
3、已知圓的方程為,求過圓上一點的切線方程、
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程、第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓、第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間、最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮、
III、實際應用回歸自然
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m)
我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識、
。ㄋ模┓答佊柧殹纬煞椒
問題六:
1、求過原點和點,且圓心在直線上的圓的標準方程、
2、求圓過點的切線方程、
3、求圓過點的切線方程、
接下來是第四環節——反饋訓練、這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心、另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果、
(五)小結反思——拓展引申
1、課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法
、賵A心為,半徑為r的圓的標準方程為:
圓心在原點時,半徑為r的圓的標準方程為:
、谝阎獔A的方程是,經過圓上一點的切線的方程是:
2、分層作業
。ˋ)鞏固型作業:教材P81—82:(習題7、6)1,2,4、(B)思維拓展型作業:試推導過圓上一點的切線方程、
3、激發新疑
問題七:
1、把圓的標準方程展開后是什么形式?
2、方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了、在知識的拓展中再次掀起學生探究的熱情、另外它為下節課研究圓的一般方程作了重要的準備、
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:
橫向闡述教學設計
(一)突出重點抓住關鍵突破難點
求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點、
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的.求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心、最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五、這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破、
(二)學生主體教師主導探究主線
本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終、從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的、另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務、
。ㄈ┡囵B思維提升能力激勵創新
為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力、在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行、
以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變、最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。
圓的標準方程高中說課稿2
【一】教學背景分析
1、教材結構分析
《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用。
2、學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3、教學目標
(1)知識目標:
、僬莆請A的標準方程;
、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;
、劾脠A的標準方程解決簡單的實際問題。
(2)能力目標:
、龠M一步培養學生用代數方法研究幾何問題的能力;
②加深對數形結合思想的理解和加強對待定系數法的運用;
、墼鰪妼W生用數學的意識。
(3)情感目標:
、倥囵B學生主動探究知識、合作交流的意識;
②在體驗數學美的過程中激發學生的學習興趣。
根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4、教學重點與難點
(1)重點:圓的標準方程的求法及其應用。
(2)難點:
、贂鶕煌囊阎獥l件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關的實際問題。
為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:
【二】教法學法分析
1、教法分析為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。
2、學法分析通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數法求的過程。
下面我就對具體的教學過程和設計加以說明:
【三】教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:
創設情境啟迪思維深入探究獲得新知應用舉例鞏固提高反饋訓練形成方法小結反思拓展引申下面我從縱橫兩方面敘述我的教學程序與設計意圖。
首先:縱向敘述教學過程
(一)創設情境——啟迪思維
問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節。
(二)深入探究——獲得新知
問題二
1、根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2、如果圓心在,半徑為時又如何呢?
這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。
(三)應用舉例——鞏固提高
I。直接應用內化新知
問題三
1、寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經過點,圓心在點。
2、寫出圓的圓心坐標和半徑。
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備。
II。靈活應用提升能力
問題四
1、求以點為圓心,并且和直線相切的圓的方程。
2、求過點,圓心在直線上且與軸相切的圓的方程。
3、已知圓的方程為,求過圓上一點的切線方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮。
III。實際應用回歸自然
問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。
(四)反饋訓練——形成方法
問題六
1、求過原點和點,且圓心在直線上的圓的標準方程。
2、求圓過點的切線方程。
3、求圓過點的切線方程。
接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。
(五)小結反思——拓展引申
1。課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法
、賵A心為,半徑為r的圓的標準方程為:
圓心在原點時,半徑為r的圓的標準方程為:。
②已知圓的方程是,經過圓上一點的切線的方程是:。
2、分層作業
(A)鞏固型作業:教材P81-82:(習題7.6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。
3、激發新疑
問題七1。把圓的標準方程展開后是什么形式?
2、方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:
橫向闡述教學設計
(一)突出重點抓住關鍵突破難點
求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點。
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。
(二)學生主體教師主導探究主線
本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。
(三)培養思維提升能力激勵創新
為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。
圓的標準方程高中說課稿3
教材分析
圓是學生在初中已初步了解了圓的知識及前面學習了直線方程的基礎上來進一步學習《圓的標準方程》,它既是前面圓的知識的復習延伸,又是后繼學習圓與直線的位置關系奠定了基礎。因此,本節課在本章中起著承上啟下的重要作用。
教學目標
1. 知識與技能:探索并掌握圓的標準方程,能根據方程寫出圓的坐標和圓的半徑。
2. 過程與方法:通過圓的標準方程的學習,掌握求曲線方程的方法,領會數形結合的思想。
3. 情感態度與價值觀:激發學生學習數學的興趣,感受學習成功的喜悅。
教學重點難點
以及措施
教學重點:圓的標準方程理解及運用
教學難點:根據不同條件,利用待定系數求圓的標準方程。
根據教學內容的特點及高一年級學生的年齡、認知特征,緊緊抓住課堂知識的結構關系,遵循“直觀認知――操作體會――感悟知識特征――應用知識”的認知過程,設計出包括:觀察、操作、思考、交流等內容的教學流程。并且充分利用現代化信息技術的教學手段提高教學效率。以此使學生獲取知識,給學生獨立操作、合作交流的機會。學法上注重讓學生參與方程的推導過程,努力拓展學生思維的空間,促其在嘗試中發現,討論中明理,合作中成功,讓學生真正體驗知識的形成過程。
學習者分析
高一年級的學生從知識層面上已經掌握了圓的相關性質;從能力層面具備了一定的觀察、分析和數據處理能力,對數學問題有自己個人的看法;從情感層面上學生思維活躍積極性高,但他們數學應用意識和語言表達的能力還有待加強。
教法設計
問題情境引入法 啟發式教學法 講授法
學法指導
自主學習法 討論交流法 練習鞏固法
教學準備
ppt課件 導學案
教學環節
教學內容
教師活動
學生活動
設計意圖
情景引入
回顧復習
(2分鐘)
1.觀賞生活中有關圓的圖片
2.回顧復習圓的定義,并觀看圓的生成flash動畫。
提問:直線可以用一個方程表示,那么圓可以用一個方程表示嗎?
教師創設情景,引領學生感受圓。
教師提出問題。引導學生思考,引出本節主旨。
學生觀賞圓的圖片和動畫,思考如何表示圓的方程。
生活中的圖片展示,調動學生學習的積極性,讓學生體會到園在日常生活中的廣泛應用
自主學習
(5分鐘)
1.介紹動點軌跡方程的求解步驟:
(1)建系:在圖形中建立適當的坐標系;
(2)設點:用有序實數對(x,y)表示曲 線上任意一點M的坐標;
(3)列式:用坐標表示條件P(M)的方程 ;
(4)化簡:對P(M)方程化簡到最簡形式;
2.學生自主學習圓的方程推導,并完成相應學案內容,
教師介紹求軌跡方程的步驟后,引導學生自學圓的標準方程
自主學習課本中圓的標準方程的推導過程,并完成導學案的內容,并當堂展示。
培養學生自主學習,獲取知識的能力
合作探究(10分鐘)
1.根據圓的標準方程說明確定圓的方程的條件有哪些?
2.點M(x0,y0)與圓(x-a)2+(y-b)2=r2的關系的判斷方法:
(1)點在圓上
(2)點在圓外
(3)點在圓內
教師引導學生分組探討,從旁巡視指導學生在自學和探討中遇到的問題,并鼓勵學生以小組為單位展示探究成果。
學生展開合作性的探討,并陳述自己的研究成果。
通過合作探究和自我的展示,鼓勵學生合作學習的品質
當堂訓練(18分鐘)
1.求下列圓的圓心坐標和半徑
C1: x2+y2=5
C2: (x-3)2+y2=4
C3: x2+(y+1)2=a2(a≠0)
2. 以C(4,-6)為圓心,半徑等于3的圓的標準方程
3. 設圓(x-a)2+(y-b)2=r2
則坐標原點的位置是( )
A.在圓外 B.在圓上
C.在圓內 D.與a的取值有關
4.寫出下列各圓的標準方程(1)圓心在原點,半徑等于5
(2)經過點P(5,1),圓心在點C(6,-2);
(3)以A(2,5),B(0,-1)為直徑的圓.
5.下列方程分別表示什么圖形
(1) x2+y2=0
(2) (x-1)2 =8-(y+2)2
(3) 《圓的標準方程》教學設計-賈偉
6.鞏固提升:已知圓心為C的圓經過點A(1,1)和B(2,-2),且圓心在直線l:x-y+1=0上,求圓C的標準方程并作圖
指導學生就不同條件下給出的圓心和半徑關系,求解圓的標準方程這兩個要素展開訓練。
學生自主開展訓練,并糾正學習中所遇到的問題
鞏固所學知識,并查缺補漏。
回顧小結
(1分鐘)
1.你學到了哪些知識?
2.你掌握了哪些技能?
3.你體會到了哪些數學思想?
采用提問的形式幫助學生回顧和分析本節所學。
學生思考并從知識、技能和思想方法上回顧總結。
培養學生歸納總結能力
作業布置
(1分鐘)
課本87頁習題2-2
A組的第1道題
布置訓練任務
標記并完成相應的任務
檢測學生掌握知識情況。
教學反思
本節教學主要遵循“回-導-學-展-講-練-結”的高效課堂教學模式,遵循學生學習的主體地位,鼓勵學生自主思考和探討。
教學中要積極鼓勵學生多思考總結,在判斷點與圓的位置關系中,要遵從學生個性化的發展思路,鼓勵學生創造性的解決問題。
【圓的標準方程高中說課稿】相關文章:
高中圓的標準方程的說課稿11-20
圓的標準方程高中說課稿11-09
高中數學《圓的標準方程》說課稿04-24
高中數學《圓的標準方程》說課稿范文11-30
高中數學《圓的標準方程》說課稿模板11-26
高中數學說課稿:《圓的標準方程》10-17
高二數學說課稿《圓的標準方程》10-18
高一數學《圓的標準方程》說課稿模板04-26
高中數學《橢圓的標準方程》說課稿11-23
《橢圓及其標準方程》說課稿12-11