1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 圓的標(biāo)準(zhǔn)方程高中說(shuō)課稿

        時(shí)間:2022-11-09 18:35:38 高中說(shuō)課稿 我要投稿

        圓的標(biāo)準(zhǔn)方程高中說(shuō)課稿

          在教學(xué)工作者開展教學(xué)活動(dòng)前,就難以避免地要準(zhǔn)備說(shuō)課稿,說(shuō)課稿有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么說(shuō)課稿應(yīng)該怎么寫才合適呢?下面是小編為大家整理的圓的標(biāo)準(zhǔn)方程高中說(shuō)課稿,希望能夠幫助到大家。

        圓的標(biāo)準(zhǔn)方程高中說(shuō)課稿

        圓的標(biāo)準(zhǔn)方程高中說(shuō)課稿1

          【一】教學(xué)背景分析

          1、教材結(jié)構(gòu)分析

          《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)。圓作為常見的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用。

          2、學(xué)情分析

          圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識(shí)等方面有待加強(qiáng)。

          根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

          3、教學(xué)目標(biāo)

          (1)知識(shí)目標(biāo):

         、僬莆?qǐng)A的標(biāo)準(zhǔn)方程;

         、跁(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

          ③利用圓的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問題。

          (2)能力目標(biāo):

         、龠M(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

         、诩由顚(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;

          ③增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。

          (3)情感目標(biāo):

         、倥囵B(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

          ②在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

          根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

          4、教學(xué)重點(diǎn)與難點(diǎn)

          (1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。

          (2)難點(diǎn):

         、贂(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

         、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題。

          為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:

          【二】教法學(xué)法分析

          1、教法分析為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程。

          2、學(xué)法分析通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解。通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程。

          下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:

          【三】教學(xué)過(guò)程與設(shè)計(jì)

          整個(gè)教學(xué)過(guò)程是由七個(gè)問題組成的問題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

          創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高反饋訓(xùn)練形成方法小結(jié)反思拓展引申下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。

          首先:縱向敘述教學(xué)過(guò)程

          (一)創(chuàng)設(shè)情境——啟迪思維

          問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

          通過(guò)對(duì)這個(gè)實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識(shí),不但易于保持,而且易于遷移。

          通過(guò)對(duì)問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問題深入,進(jìn)入第二環(huán)節(jié)。

          (二)深入探究——獲得新知

          問題二

          1、根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

          2、如果圓心在,半徑為時(shí)又如何呢?

          這一環(huán)節(jié)我首先讓學(xué)生對(duì)問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。

          得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)。

          (三)應(yīng)用舉例——鞏固提高

          I。直接應(yīng)用內(nèi)化新知

          問題三

          1、寫出下列各圓的標(biāo)準(zhǔn)方程:

          (1)圓心在原點(diǎn),半徑為3;

          (2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。

          2、寫出圓的圓心坐標(biāo)和半徑。

          我設(shè)計(jì)了兩個(gè)小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。

          II。靈活應(yīng)用提升能力

          問題四

          1、求以點(diǎn)為圓心,并且和直線相切的圓的方程。

          2、求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程。

          3、已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程。

          你能歸納出具有一般性的結(jié)論嗎?

          已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么?

          我設(shè)計(jì)了三個(gè)小問題,第一個(gè)小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮。

          III。實(shí)際應(yīng)用回歸自然

          問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0。01m)。

          我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)。

          (四)反饋訓(xùn)練——形成方法

          問題六

          1、求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。

          2、求圓過(guò)點(diǎn)的切線方程。

          3、求圓過(guò)點(diǎn)的切線方程。

          接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。

          (五)小結(jié)反思——拓展引申

          1。課堂小結(jié)

          把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

         、賵A心為,半徑為r的圓的標(biāo)準(zhǔn)方程為:

          圓心在原點(diǎn)時(shí),半徑為r的圓的標(biāo)準(zhǔn)方程為:。

          ②已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是:。

          2、分層作業(yè)

          (A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程。

          3、激發(fā)新疑

          問題七1。把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

          2、方程表示什么圖形?

          在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識(shí)的拓展中再次掀起學(xué)生探究的'熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。

          以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):

          橫向闡述教學(xué)設(shè)計(jì)

          (一)突出重點(diǎn)抓住關(guān)鍵突破難點(diǎn)

          求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。

          第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長(zhǎng),學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問題——問題五。這樣的設(shè)計(jì),使學(xué)生在解決問題的同時(shí),形成了方法,難點(diǎn)自然突破。

          (二)學(xué)生主體教師主導(dǎo)探究主線

          本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

          (三)培養(yǎng)思維提升能力激勵(lì)創(chuàng)新

          為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行。

          以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。

        圓的標(biāo)準(zhǔn)方程高中說(shuō)課稿2

          一、教學(xué)背景分析

          1、教材結(jié)構(gòu)分析

          《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)、圓作為常見的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用、圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用、

          2、學(xué)情分析

          圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的、但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難、另外學(xué)生在探究問題的能力,合作交流的意識(shí)等方面有待加強(qiáng)、

          根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

          3、教學(xué)目標(biāo)

         。1)知識(shí)目標(biāo):

          ①掌握?qǐng)A的標(biāo)準(zhǔn)方程;

         、跁(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

          ③利用圓的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問題、

          (2)能力目標(biāo):

         、龠M(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

         、诩由顚(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;

         、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)、

         。3)情感目標(biāo):

          ①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

         、谠隗w驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣、

          根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

          4、教學(xué)重點(diǎn)與難點(diǎn)

          (1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用、

         。2)難點(diǎn):

         、贂(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

         、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題、

          為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:

          二、教法學(xué)法分析

          1、教法分析為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上、另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程、

          2、學(xué)法分析通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解、通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓、通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程、

          下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:

          三、教學(xué)過(guò)程與設(shè)計(jì)

          整個(gè)教學(xué)過(guò)程是由七個(gè)問題組成的問題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

          創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高

          反饋訓(xùn)練形成方法小結(jié)反思拓展引申

          下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖、

          首先:縱向敘述教學(xué)過(guò)程

         。ㄒ唬﹦(chuàng)設(shè)情境——啟迪思維

          問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2、7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

          通過(guò)對(duì)這個(gè)實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決、一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題、用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望、這樣獲取的知識(shí),不但易于保持,而且易于遷移、

          通過(guò)對(duì)問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問題深入,進(jìn)入第二環(huán)節(jié)、

          (二)深入探究——獲得新知

          問題二:

          1、根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

          2、如果圓心在,半徑為時(shí)又如何呢?

          這一環(huán)節(jié)我首先讓學(xué)生對(duì)問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程、然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究、我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法、

          得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)。

         。ㄈ⿷(yīng)用舉例——鞏固提高

          I、直接應(yīng)用內(nèi)化新知

          問題三:

          1、寫出下列各圓的標(biāo)準(zhǔn)方程:

         。1)圓心在原點(diǎn),半徑為3;

         。2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)、

          2、寫出圓的圓心坐標(biāo)和半徑

          我設(shè)計(jì)了兩個(gè)小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備、

          II、靈活應(yīng)用提升能力

          問題四:

          1、求以點(diǎn)為圓心,并且和直線相切的圓的方程、

          2、求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程、

          3、已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程、

          你能歸納出具有一般性的結(jié)論嗎?

          已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么?

          我設(shè)計(jì)了三個(gè)小問題,第一個(gè)小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程、第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓、第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間、最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮、

          III、實(shí)際應(yīng)用回歸自然

          問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0.01m)

          我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)、

         。ㄋ模┓答佊(xùn)練——形成方法

          問題六:

          1、求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程、

          2、求圓過(guò)點(diǎn)的切線方程、

          3、求圓過(guò)點(diǎn)的切線方程、

          接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練、這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心、另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果、

          (五)小結(jié)反思——拓展引申

          1、課堂小結(jié)

          把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

          ①圓心為,半徑為r的圓的標(biāo)準(zhǔn)方程為:

          圓心在原點(diǎn)時(shí),半徑為r的圓的標(biāo)準(zhǔn)方程為:

         、谝阎獔A的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是:

          2、分層作業(yè)

         。ˋ)鞏固型作業(yè):教材P81—82:(習(xí)題7、6)1,2,4、(B)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程、

          3、激發(fā)新疑

          問題七:

          1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

          2、方程表示什么圖形?

          在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了、在知識(shí)的拓展中再次掀起學(xué)生探究的熱情、另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備、

          以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):

          橫向闡述教學(xué)設(shè)計(jì)

          (一)突出重點(diǎn)抓住關(guān)鍵突破難點(diǎn)

          求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)、

          第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長(zhǎng),學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心、最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問題——問題五、這樣的設(shè)計(jì),使學(xué)生在解決問題的同時(shí),形成了方法,難點(diǎn)自然突破、

         。ǘ⿲W(xué)生主體教師主導(dǎo)探究主線

          本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終、從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的、另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)、

          (三)培養(yǎng)思維提升能力激勵(lì)創(chuàng)新

          為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力、在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行、

          以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變、最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。

        圓的標(biāo)準(zhǔn)方程高中說(shuō)課稿3

          教材分析

          圓是學(xué)生在初中已初步了解了圓的知識(shí)及前面學(xué)習(xí)了直線方程的基礎(chǔ)上來(lái)進(jìn)一步學(xué)習(xí)《圓的標(biāo)準(zhǔn)方程》,它既是前面圓的知識(shí)的復(fù)習(xí)延伸,又是后繼學(xué)習(xí)圓與直線的位置關(guān)系奠定了基礎(chǔ)。因此,本節(jié)課在本章中起著承上啟下的重要作用。

          教學(xué)目標(biāo)

          1. 知識(shí)與技能:探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程,能根據(jù)方程寫出圓的坐標(biāo)和圓的半徑。

          2. 過(guò)程與方法:通過(guò)圓的標(biāo)準(zhǔn)方程的學(xué)習(xí),掌握求曲線方程的方法,領(lǐng)會(huì)數(shù)形結(jié)合的思想。

          3. 情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)成功的喜悅。

          教學(xué)重點(diǎn)難點(diǎn)

          以及措施

          教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程理解及運(yùn)用

          教學(xué)難點(diǎn):根據(jù)不同條件,利用待定系數(shù)求圓的標(biāo)準(zhǔn)方程。

          根據(jù)教學(xué)內(nèi)容的特點(diǎn)及高一年級(jí)學(xué)生的年齡、認(rèn)知特征,緊緊抓住課堂知識(shí)的結(jié)構(gòu)關(guān)系,遵循“直觀認(rèn)知――操作體會(huì)――感悟知識(shí)特征――應(yīng)用知識(shí)”的認(rèn)知過(guò)程,設(shè)計(jì)出包括:觀察、操作、思考、交流等內(nèi)容的教學(xué)流程。并且充分利用現(xiàn)代化信息技術(shù)的教學(xué)手段提高教學(xué)效率。以此使學(xué)生獲取知識(shí),給學(xué)生獨(dú)立操作、合作交流的機(jī)會(huì)。學(xué)法上注重讓學(xué)生參與方程的推導(dǎo)過(guò)程,努力拓展學(xué)生思維的空間,促其在嘗試中發(fā)現(xiàn),討論中明理,合作中成功,讓學(xué)生真正體驗(yàn)知識(shí)的形成過(guò)程。

          學(xué)習(xí)者分析

          高一年級(jí)的學(xué)生從知識(shí)層面上已經(jīng)掌握了圓的相關(guān)性質(zhì);從能力層面具備了一定的觀察、分析和數(shù)據(jù)處理能力,對(duì)數(shù)學(xué)問題有自己個(gè)人的看法;從情感層面上學(xué)生思維活躍積極性高,但他們數(shù)學(xué)應(yīng)用意識(shí)和語(yǔ)言表達(dá)的能力還有待加強(qiáng)。

          教法設(shè)計(jì)

          問題情境引入法 啟發(fā)式教學(xué)法 講授法

          學(xué)法指導(dǎo)

          自主學(xué)習(xí)法 討論交流法 練習(xí)鞏固法

          教學(xué)準(zhǔn)備

          ppt課件 導(dǎo)學(xué)案

          教學(xué)環(huán)節(jié)

          教學(xué)內(nèi)容

          教師活動(dòng)

          學(xué)生活動(dòng)

          設(shè)計(jì)意圖

          情景引入

          回顧復(fù)習(xí)

          (2分鐘)

          1.觀賞生活中有關(guān)圓的圖片

          2.回顧復(fù)習(xí)圓的定義,并觀看圓的生成flash動(dòng)畫。

          提問:直線可以用一個(gè)方程表示,那么圓可以用一個(gè)方程表示嗎?

          教師創(chuàng)設(shè)情景,引領(lǐng)學(xué)生感受圓。

          教師提出問題。引導(dǎo)學(xué)生思考,引出本節(jié)主旨。

          學(xué)生觀賞圓的圖片和動(dòng)畫,思考如何表示圓的方程。

          生活中的圖片展示,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,讓學(xué)生體會(huì)到園在日常生活中的廣泛應(yīng)用

          自主學(xué)習(xí)

          (5分鐘)

          1.介紹動(dòng)點(diǎn)軌跡方程的求解步驟:

          (1)建系:在圖形中建立適當(dāng)?shù)淖鴺?biāo)系;

          (2)設(shè)點(diǎn):用有序?qū)崝?shù)對(duì)(x,y)表示曲 線上任意一點(diǎn)M的坐標(biāo);

          (3)列式:用坐標(biāo)表示條件P(M)的方程 ;

          (4)化簡(jiǎn):對(duì)P(M)方程化簡(jiǎn)到最簡(jiǎn)形式;

          2.學(xué)生自主學(xué)習(xí)圓的方程推導(dǎo),并完成相應(yīng)學(xué)案內(nèi)容,

          教師介紹求軌跡方程的步驟后,引導(dǎo)學(xué)生自學(xué)圓的標(biāo)準(zhǔn)方程

          自主學(xué)習(xí)課本中圓的標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程,并完成導(dǎo)學(xué)案的內(nèi)容,并當(dāng)堂展示。

          培養(yǎng)學(xué)生自主學(xué)習(xí),獲取知識(shí)的能力

          合作探究(10分鐘)

          1.根據(jù)圓的標(biāo)準(zhǔn)方程說(shuō)明確定圓的方程的條件有哪些?

          2.點(diǎn)M(x0,y0)與圓(x-a)2+(y-b)2=r2的關(guān)系的判斷方法:

          (1)點(diǎn)在圓上

          (2)點(diǎn)在圓外

          (3)點(diǎn)在圓內(nèi)

          教師引導(dǎo)學(xué)生分組探討,從旁巡視指導(dǎo)學(xué)生在自學(xué)和探討中遇到的問題,并鼓勵(lì)學(xué)生以小組為單位展示探究成果。

          學(xué)生展開合作性的探討,并陳述自己的研究成果。

          通過(guò)合作探究和自我的展示,鼓勵(lì)學(xué)生合作學(xué)習(xí)的品質(zhì)

          當(dāng)堂訓(xùn)練(18分鐘)

          1.求下列圓的圓心坐標(biāo)和半徑

          C1: x2+y2=5

          C2: (x-3)2+y2=4

          C3: x2+(y+1)2=a2(a≠0)

          2. 以C(4,-6)為圓心,半徑等于3的圓的標(biāo)準(zhǔn)方程

          3. 設(shè)圓(x-a)2+(y-b)2=r2

          則坐標(biāo)原點(diǎn)的位置是( )

          A.在圓外 B.在圓上

          C.在圓內(nèi) D.與a的取值有關(guān)

          4.寫出下列各圓的標(biāo)準(zhǔn)方程(1)圓心在原點(diǎn),半徑等于5

          (2)經(jīng)過(guò)點(diǎn)P(5,1),圓心在點(diǎn)C(6,-2);

          (3)以A(2,5),B(0,-1)為直徑的圓.

          5.下列方程分別表示什么圖形

          (1) x2+y2=0

          (2) (x-1)2 =8-(y+2)2

          (3) 《圓的標(biāo)準(zhǔn)方程》教學(xué)設(shè)計(jì)-賈偉

          6.鞏固提升:已知圓心為C的圓經(jīng)過(guò)點(diǎn)A(1,1)和B(2,-2),且圓心在直線l:x-y+1=0上,求圓C的標(biāo)準(zhǔn)方程并作圖

          指導(dǎo)學(xué)生就不同條件下給出的圓心和半徑關(guān)系,求解圓的標(biāo)準(zhǔn)方程這兩個(gè)要素展開訓(xùn)練。

          學(xué)生自主開展訓(xùn)練,并糾正學(xué)習(xí)中所遇到的問題

          鞏固所學(xué)知識(shí),并查缺補(bǔ)漏。

          回顧小結(jié)

          (1分鐘)

          1.你學(xué)到了哪些知識(shí)?

          2.你掌握了哪些技能?

          3.你體會(huì)到了哪些數(shù)學(xué)思想?

          采用提問的形式幫助學(xué)生回顧和分析本節(jié)所學(xué)。

          學(xué)生思考并從知識(shí)、技能和思想方法上回顧總結(jié)。

          培養(yǎng)學(xué)生歸納總結(jié)能力

          作業(yè)布置

          (1分鐘)

          課本87頁(yè)習(xí)題2-2

          A組的第1道題

          布置訓(xùn)練任務(wù)

          標(biāo)記并完成相應(yīng)的任務(wù)

          檢測(cè)學(xué)生掌握知識(shí)情況。

          教學(xué)反思

          本節(jié)教學(xué)主要遵循“回-導(dǎo)-學(xué)-展-講-練-結(jié)”的高效課堂教學(xué)模式,遵循學(xué)生學(xué)習(xí)的主體地位,鼓勵(lì)學(xué)生自主思考和探討。

          教學(xué)中要積極鼓勵(lì)學(xué)生多思考總結(jié),在判斷點(diǎn)與圓的位置關(guān)系中,要遵從學(xué)生個(gè)性化的發(fā)展思路,鼓勵(lì)學(xué)生創(chuàng)造性的解決問題。

        【圓的標(biāo)準(zhǔn)方程高中說(shuō)課稿】相關(guān)文章:

        高中圓的標(biāo)準(zhǔn)方程的說(shuō)課稿11-20

        高中數(shù)學(xué)《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿04-24

        高中數(shù)學(xué)《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿范文11-30

        高中數(shù)學(xué)《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿模板11-26

        高中數(shù)學(xué)說(shuō)課稿:《圓的標(biāo)準(zhǔn)方程》10-17

        高二數(shù)學(xué)說(shuō)課稿《圓的標(biāo)準(zhǔn)方程》10-18

        高一數(shù)學(xué)《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿模板04-26

        高中數(shù)學(xué)《橢圓的標(biāo)準(zhǔn)方程》說(shuō)課稿11-23

        《橢圓及其標(biāo)準(zhǔn)方程》說(shuō)課稿12-11

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>