初中《勾股定理》說課稿范文
作為一名為他人授業(yè)解惑的教育工作者,就不得不需要編寫說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。那要怎么寫好說課稿呢?下面是小編收集整理的初中《勾股定理》說課稿范文,歡迎閱讀,希望大家能夠喜歡。
初中《勾股定理》說課稿1
一、教材分析:
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。
教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學(xué)目標(biāo)如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
二、教學(xué)重點:
勾股定理的證明和應(yīng)用。
三、教學(xué)難點:
勾股定理的證明。
四、教法和學(xué)法:
教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:
以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
五、教學(xué)程序
:本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
。ㄒ唬﹦(chuàng)設(shè)情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。
(二)初步感知理解教材
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
。ㄈ┵|(zhì)疑解難、討論歸納:
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;
。1)這兩個圖形有什么特點?
。2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習(xí)強化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。
(五)歸納總結(jié)練習(xí)反饋
引導(dǎo)學(xué)生對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。
初中《勾股定理》說課稿2
一、說教材分析
1.教材的地位和作用
華師大版八年級上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它揭示了一個直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。
因此他的教育教學(xué)價值就具體體現(xiàn)在如下三維目標(biāo)中:
知識與技能:
1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。
2、理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實際問題。
過程與方法:
1、經(jīng)歷觀察—猜想—歸納—驗證等一系列過程,體會數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。
2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學(xué)生的數(shù)學(xué)語言表達能力和初步的邏輯推理能力。
情感、態(tài)度與價值觀:
1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。
2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生的合作意識和然所精神。
3、讓學(xué)生通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學(xué)習(xí)方式。
由于八年級的.學(xué)生具有一定分析能力,但活動經(jīng)驗不足,所以
本節(jié)課教學(xué)重點:勾股定理的探索過程,并掌握和運用它。
教學(xué)難點:分割,補全法證面積相等,探索勾股定理。
二、說教法學(xué)法分析:
要上好一堂課,就是要把所確定的三維目標(biāo)有機地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:
先從學(xué)生熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。
學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學(xué)生感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。
三、說教學(xué)程序設(shè)計
1、故事引入新課,激起學(xué)生學(xué)習(xí)興趣。
牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。畢達哥拉斯的發(fā)現(xiàn)引入新課。
2、探索新知
在這里我設(shè)計了四個內(nèi)容:
、偬剿鞯妊苯侨切稳叺年P(guān)系
、谶呴L為3、4、5為邊長的直角三角形的三邊關(guān)系
、蹖W(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系
、苋厼閍、b、c的直角三角形的三邊的關(guān)系,(證明)
、莨垂啥ɡ須v史介紹,讓學(xué)生體會勾股定理的文化價值。
體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。
3、新知運用:
①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)
、谠谥苯侨切沃,已知∠B=90°,AB=6,BC=8,求AC。
、垡鲆粋人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?
④如圖,學(xué)校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了步路(假設(shè)2步為1米),卻踩傷了花草.
4、小結(jié)本課:
學(xué)完了這節(jié)課,你有什么收獲?
老師補充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。數(shù)學(xué)來源于實踐,而又應(yīng)用于實踐。解決一個問題的方法是多樣性的,我們要多思考。勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。
反思:
教學(xué)設(shè)計主要是體現(xiàn)從特殊到一般的知識形成過程,探索問題的設(shè)計上有點難,第二個問題應(yīng)加個3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設(shè)計進去,就為后面的練習(xí)留足時間。探索時間較長,整個課程推行進度較慢,練習(xí)較少。
對學(xué)生的啟發(fā)不夠,對學(xué)生的關(guān)注不夠,學(xué)生對問題的思考不能及時想出來,沒有及時很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因為問題設(shè)計的較難,沒有很好的體現(xiàn)出探究。
預(yù)期的目標(biāo)沒有很好的達成,學(xué)生雖然掌握了勾股定理,但探索熱情沒有點燃,思維能力,動手能力,探索精神沒有很好的得到發(fā)展。
【初中《勾股定理》說課稿范文】相關(guān)文章:
初中數(shù)學(xué)《勾股定理》優(yōu)秀說課稿(通用5篇)05-29
勾股定理公式08-30
初中物理面試說課稿優(yōu)秀范文08-03
最新初中物理《功》說課稿范文07-28
精選說課稿初中范文五篇06-19
精選說課稿初中范文六篇06-02
【熱門】說課稿初中范文六篇05-30
關(guān)于說課稿初中范文三篇05-30
勾股定理的應(yīng)用教案08-30
初中《旋轉(zhuǎn)》說課稿12-01