- 相關推薦
數學手抄報的資料及圖片
數學手抄報需要怎么畫呢?我們不妨一起來看看吧!希望對您有所幫助!以下是小編為您搜集整理提供到的數學手抄報的資料內容,希望對您有所幫助!歡迎閱讀參考學習!x
相關內容
高考數學復習切記“三多三少”
高考不僅是人才的選拔,更是對高中教學的導向,在仔細分析今年的高考數學卷后,下面給即將升入高三的學生提出數學復習中的“三個強化、三個關注”。
一、多理解,少記憶
經常有學生提出疑問:數學中的知識點我都記住了,為什么遇到題目還是不會解呢?
其實我們在復習過程中往往是按知識點構建知識框架,如復習函數性質時按照函數單調性、奇偶性、值域、圖像等知識點分別講解、訓練;復習數列極限時根據求數列極限的類型和方法,進行一些題型訓練等,這些都是必須的,但還遠遠不夠。
比如復習反函數不僅要記住如何求反函數,而且更要知道為什么要研究反函數,原來函數與反函數的圖像各有什么特征、關系是什么。
有一年高考理科第8題、文科第9題就是已知原來函數解析式,考查反函數圖像經過定點的問題;又如文科第14題三條直線圍成三角形求三角形面積的極限。
如果按照先求面積再求極限的思路,則運算較繁瑣,但如果從對極限的理解、對極限思想的認識來思考,該三角形兩個頂點是固定的,第三個頂點隨n的變化而變化,我們可以確定該點的極限位置,所得極限三角形的面積即為三角形面積的極限。
這類問題在理科第11題及前幾年的高考中多次出現,目的就是考查對極限思想的理解。因此在復習過程中,不應簡單羅列知識點,而應明確知識的發生過程,明確知識具有的功能,這樣才能使“死”的知識“活”起來。
二、多動腦,少依賴
學生經常有這樣的疑問:這些題目我都會做,為什么總是一做就錯呢?有人歸結為“粗心”,其實歸根到底是運算能力不強。運算能力包括運算的正確率、速度及對算式的化簡、變形能力,F在的學生對計算器的依賴性越來越大,缺乏對計算方法、計算規則的掌握,缺乏對計算過程的體驗。
從今年高考閱卷中就反映出許多問題,如理科第1題,簡單的分式不等式求解,也有許多學生出錯;又如第2、4、6題這類被稱為“一步題”的題目,
都有一批學生不能得分;第19題是三角與對數式的化簡,學生對三角公式及對數的運算法則不能熟練掌握,本來很簡單的問題,解題過程漏洞百出;
再如第23題關于解析幾何的綜合問題,雖然解題思路不復雜,但在將直線方程代入橢圓方程的化簡變形過程中出現了這樣或那樣的錯誤,導致后一段解題的失分,非?上。
縱觀高考試題,真正不會做的題目并不多,但會做而拿不到分數的情況卻很常見,原因就在于運算能力薄弱。
要提高運算能力,首先要強化運算意識,認識到運算的重要性;其次,靜下心來先從提高正確率入手,在此基礎上再提高運算速度;再次,最大限度利用人腦。
如三角式的化簡、求值問題,解題時應拋開公式表,先對照條件,在頭腦中選擇公式,經過幾次運行,公式之間的關系就清楚了,公式也記住了。
三、多通法,少技巧
縱觀多年的高考題,雖然題目、題型在變,但對解決數學問題的通性通法沒變。所謂通性通法,通俗地講就是解決問題的常規思路、常用方法,如有一年的高考理科第20題數列問題,條件給出sx與ax的一個關系,要研究該數列的性質。
看到這個條件就知道要利用ax=sx-sx-1(n≥2)的公式轉化;問題(2)求sx最小值,按照常規思路,先將表示成的式子,再從函數的角度考慮其單調性,求得最小值。
理科第22題中的證明問題可轉化為比較兩個代數式的大小,而比較大小最常用的方法即為“求差比較法”;該題第(3)小題中要求指出函數的基本性質,
很顯然,函數的基本性質是指單調性、奇偶性、周期性、最值等。又如第23題,所使用的方法都是解析幾何中常用的方法。
從以上可發現,平時的復習應重在對通性通法的掌握,在解題中強化通法。
具體策略:少做題、多思考,多通法,少技巧。解題后可從如下幾個角度思考:該題涉及到哪些知識點?是正向運用還是逆向運用?該題屬于哪種類型?是用什么方法解決的?這種方法還有哪些應用?該題還能怎么變化?如何解決?
【數學手抄報的資料及圖片】相關文章:
數學手抄報資料及圖片06-21
國學手抄報資料及圖片07-04
感恩手抄報資料及圖片07-07
關于語文的手抄報資料及圖片07-07
文明出行手抄報資料及圖片07-07
垃圾手抄報資料及圖片大全07-04
圣誕節手抄報資料及圖片大全07-03
防溺水安全知識手抄報資料及圖片07-28
清明節手抄報內容資料及圖片設計07-13