隨著2017考研的到來,考生們在積極復習備考,考研數學有什么重要考點呢?下面是小編為大家整理收集的2017考研數學概率論考察特點,僅供大家參考。
1、與高等數學聯系緊密
概率論與數理統計這門學科與高等數學的聯系是非常緊密的,因為對于我們在求概率、期望、方差等變量時都需要用到高數中的相關知識,包括極限、導數、定積分與二重積分等,所以大家要想學好概率論這門學科,就要先學好高數的相關知識。但是大家也不用擔心,因為這部分用到的高數知識都是比較簡單的,大家只要掌握了這部分的基本知識以及基本求導數、求積分的方法就可以了。
2、偏計算,公式繁多
概率論這門學科在考研數學中主要考查大家的就是計算,大家只要會算各種情況下概率、期望、方差等就可以了。但是對于概率論這個學科而言,如果大家要計算,就需要去記住很多公式,只有把相關的公式全記住了在考試中對于不同的情況才能選取合適的公式。
3、與實際聯系緊密
概率論這個學科相對于高等數學和線性代數這兩個學科而言,它與我們的生活聯系是比較緊密的,比如說抽簽或者買票中獎的概率體現出的抽簽原理等。因為這個特點,概率論在考試中一般都是與實際問題結合起來考查大家,這時就需要大家能夠先抽象出概率學表達式,然后再代入合適的公式去求解。
【相關閱讀】:2017考研數學線代考察特點
1、行列式的重點是計算,利用性質熟練準確的計算出行列式的值。
2、矩陣中除可逆陣、伴隨陣、分塊陣、初等陣等重要概念外,主要也是運算,其運算分兩個層次:
(1)矩陣的符號運算。
(2)具體矩陣的數值運算。
3、關于向量,證明(或判別)向量組的線性相關(無關),線性表出等問題的關鍵在于深刻理解線性相關(無關)的概念及幾個相關定理的掌握,并要注意推證過程中邏輯的正確性及反證法的使用。
4、向量組的極大無關組,等價向量組,向量組及矩陣的秩的概念,以及它們相互關系也是重點內容之一。用初等行變換是求向量組的極大無關組及向量組和矩陣秩的有效方法。
5、于特征值、特征向量,要求基本上有三點:
(1)要會求特征值、特征向量,對具體給定的數值矩陣,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由給定矩陣的特征值求其相關矩陣的特征值(的取值范圍),可用定義Aξ=λξ,同時還應注意特征值和特征向量的性質及其應用。
(2)有關相似矩陣和相似對角化的問題,一般矩陣相似對角化的條件。實對稱矩陣的相似對角化及正交變換相似于對角陣,反過來,可由A的特征值,特征向量來確不定期A的參數或確定A,如果A是實對稱陣,利用不同特征值對應的特征向量相互正交,有時還可以由已知λ1的特征向量確定出λ2(λ2≠λ1)對應的特征向量,從而確定出A。
(3)相似對角化以后的應用,在線性代數中至少可用來計算行列式及An。
6、將二次型表示成矩陣形式,用矩陣的方法研究二次型的問題主要有兩個:
(1)化二次型為標準形,這主要是正交變換法(這和實對稱陣正交相似對角陣是一個問題的兩種提法),在沒有其他要求的情況下,用配方法得到標準形可能更方便些。
(2)二次型的正定性問題,對具體的數值二次型,一般可用順序主子式是否全部大于零來判別,而抽象的由給定矩陣的正定性,證明相關矩陣的正定性時,可利用標準形,規范形,特征值等到證明,這時應熟悉二次型正定有關的充分條件和必要條件。