在考研的沖刺階段,時間和精力都有限,考生們要合理的分配利用,數學科目,要著重對錯題集的利用,題海戰術放慢,對于重點、難點和疑點多研究研究,下面小編總結了數理統計估計方法三大要點和5個常考的知識點,希望對你有幫助。
一、構建知識框架
問題主要集中在概率論與數理統計中最后一部分的內容。它的考試范疇是矩估計和極大似然估計。
所以,在學習這部分之前,大家要把統計學的基本知識搞清楚,了解常見的統計量及其分布。而且大家還要深刻理解大數定理和中心極限定理的內涵。在這些基礎上,大家學習矩估計和極大似然估計就好多了。
二、把握知識原理
先看矩估計,它的本質原理是樣本矩有相合性,所以可以用樣本矩來替代總體矩。同時總體矩中含有未知參數。所以通過建立含有未知參數的樣本矩的方程就可以把參數給估計出來。
再看極大似然估計,它的本質原理是基于一種假設,即我們觀察的一組樣本數據,那么觀察這組數據發生的概率應該是比較大的。所以我們對參數的估計就是要找一個估計量使得這組數據發生的概率最大。
總之,只有理解了矩估計和極大似然估計的深刻原理,我們才能把握好這個知識,才能更好的應用它。
三、多做習題練習
有句古話:光說不練假把式。所以對知識的熟練掌握還是要通過做題來實現。同時,我也反對題海戰術,做題不是盲目的做題,不是只做不練。做題應該是有選擇的做題,做一個題就應該了解一個方法,掌握一個原理。
所以,大家可以參考歷年真題來進行練習。每做一個題,大家就該考慮下它是怎么考察我們所學的知識點的。如果做錯了,大家還要多進行反思。找到做錯的原因,并且逐步改正。這樣才能長久的提高。
5個常考的知識點:
1.幾個易混概念:連續,可導,存在原函數,可積,可微,偏導數存在他們之間的關系式怎么樣的?存在極限,導函數連續,左連續,右連續,左極限,右極限,左導數,右導數,導函數的左極限,導函數的右極限。
2.羅爾定理:設函數f(x)在閉區間[a,b]上連續(其中a不等于b),在開區間(a,b)上可導,且f(a)=f(b),那么至少存在一點ξ∈(a、b),使得f‘(ξ)=0。羅爾定理是以法國數學家羅爾的名字命名的。羅爾定理的三個已知條件的意義,①f(x)在[a,b]上連續表明曲線連同端點在內是無縫隙的曲線;②f(x)在內(a,b)可導表明曲線y=f(x)在每一點處有切線存在;③f(a)=f(b)表明曲線的割線(直線AB)平行于x軸;羅爾定理的結論的直幾何意義是:在(a,b)內至少能找到一點ξ,使f’(ξ)=0,表明曲線上至少有一點的切線斜率為0,從而切線平行于割線AB,與x軸平行。
3.泰勒公式展開的應用專題:我以前,以及我所有的同學,看到泰勒公式就哆嗦,因為咋一看很長很恐怖,瞬間大腦空白,身體失重的感覺。其實在我搞明白一下幾點后,原來的癥狀就沒有了。第一:什么情況下要進行泰勒展開;第二:以哪一點為中心進行展開;第三:把誰展開;第四:展開到幾階?
4.應用多次中值定理的專題:大部分的考研題,一般要考察你應用多次中值定理,最重要的就是要培養自己對這種題目的敏感度,要很快反映老師出這題考哪幾個中值定理,我的敏感性是靠自己多練習綜合題培養出來的。我會經常會去復習,那樣我對中值定理的題目早已沒有那種剛學高數時的害怕之極。要想對微分中值定理這塊的題目有條理的掌握,看我這個總結定會事半功倍的。
5.對稱性,輪換性,奇偶性在積分(重積分,線,面積分)中的綜合應用:這幾乎每年必考,要么小題中考,要么大題中要用,這是必須掌握的知識,但是往往不是那么容易就靠做3,4個題目就能了解這知識點的應用到底有多廣泛。我們做積分題,尤其多重積分和線面積分,死算也許能算出結果,但是要是能用以上性質,那可真是三下五除二搞定,這方面的感覺相信大家有過,可是或許僅僅是曇花一現,因為你做出來了以為以后就一定會在相似的題目中用,其實不然,因為僅僅靠幾道題目很大程度上不能給你留下太深刻的印象,下次輪到的時候或許就是考場上了,你可能頓時苦思冥想,最終還是選擇了最傻的辦法,浪費了寶貴時間。說這些其實就是說明,考場上的正常或超常發揮是建立在平時踏實做,見識廣,嚴要求的基礎上。