對于二元函數可微性的討論,一般的題型是,給你一個二元函數,討論在一個點的連續性,可導性,可微性。要想把這道題掌握好,就要把二元函數的連續性,可導性,可微性,這三個之間的關系梳理清楚了。連續與可導之間沒有任何關系,互相推導不出對方;而可微能推導出連續,也能推導出可導;可導一般來說推不出可微,除非加一個條件,
從而遇到讓你討論二元函數在一個點處的連續性,可導性,可微性時要按這個順序進行討論。因為如果第一步不連續,則肯定不可微,第三步就不用算了,但是第二步可導性還是要討論,因為二元函數的連續與可導沒有關系的;如果第一步是連續,我們現在計算第二步就是可導性,如果其中只要有一個偏導不存在,則不用再討論第三步可微性了,因為不可導,必不可微。如果二元函數,在一點處既連續,又可導,則可進行第三步,也就是最后一步,可微性的討論了。而第三步,討論可微性時,有他的一定的步驟:
討論一個二元函數的連續,可導,可微時,按照上述順序挨個兒討論即可。
2016考研復習已經進入暑期強化階段,正可謂:得暑假者得考研?忌獙W會拒絕誘惑,充實利用好這個暑假,為后期的提高及沖刺階段做足準備。