1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 小學(xué)數(shù)學(xué)畢業(yè)考試題型分析

        時間:2024-10-16 12:25:01 小升初 我要投稿
        • 相關(guān)推薦

        小學(xué)數(shù)學(xué)畢業(yè)考試題型分析

          在平平淡淡的日常中,我們最不陌生的就是試題了,借助試題可以更好地考核參考者的知識才能。一份好的試題都具備什么特點呢?下面是小編為大家收集的小學(xué)數(shù)學(xué)畢業(yè)考試題型分析,歡迎大家借鑒與參考,希望對大家有所幫助。

        小學(xué)數(shù)學(xué)畢業(yè)考試題型分析

          行程問題是小升初考試和小學(xué)四大杯賽四大題型之一(計算、數(shù)論、幾何、行程)。具體題型變化多樣,形成10多種題型,都有各自相對獨特的解題方法。

          一、一般相遇追及問題

          包括一人或者二人時(同時、異時)、地(同地、異地)、向(同向、相向)的時間和距離等條件混合出現(xiàn)的行程問題。在杯賽中大量出現(xiàn),約占80%左右。建議熟練應(yīng)用標(biāo)準(zhǔn)解法,即s=v×t結(jié)合標(biāo)準(zhǔn)線段畫圖(基本功)解答。由于只用到相遇追及的基本公式即可解決,在解題的時候,一旦出現(xiàn)比較多的情況變化時,結(jié)合自己畫出的圖分段去分析情況。

          二、復(fù)雜相遇追及問題

          (1)多人相遇追及問題。比一般相遇追及問題多了一個運動對象,即一般我們能碰到的是三人相遇追及問題。解題思路完全一樣,只是相對復(fù)雜點,關(guān)鍵是標(biāo)準(zhǔn)畫圖的能力能否清楚表明三者的運動狀態(tài)。

          (2)多次相遇追及問題。即兩個人在一段路程中同時同地或者同時異地反復(fù)相遇和追及,俗稱“反復(fù)折騰型問題”。分為標(biāo)準(zhǔn)型(如已知兩地距離和兩者速度,求n次相遇或者追及點距特定地點的距離或者在規(guī)定時間內(nèi)的相遇或追及次數(shù))和純周期問題(少見,如已知兩者速度,求一個周期后,即兩者都回到初始點時相遇、追及的次數(shù))。

          標(biāo)準(zhǔn)型解法固定,不能從路程入手,將會很繁,最好一開始就用求單位相遇、追及時間的方法,再求距離和次數(shù)就容易得多。如果用折線示意圖只能大概有個感性認識,無法具體得出答案,除非是非考試時間仔細畫標(biāo)準(zhǔn)尺寸圖。

          一般用到的時間公式是(只列舉甲、乙從兩端同時出發(fā)的情況,從同一端出發(fā)的情況少見,所以不贅述):

          單程相遇時間:t單程相遇=s/(v甲+v乙)

          單程追及時間:t單程追及=s/(v甲-v乙)

          第n次相遇時間:tn= t單程相遇×(2n-1)

          第m次追及時間:tm= t單程追及×(2m-1)

          限定時間內(nèi)的相遇次數(shù):N相遇次數(shù)=[ (tn+ t單程相遇)/2 t單程相遇]

          限定時間內(nèi)的追及次數(shù):M追及次數(shù)=[ (tm+ t單程追及)/2 t單程追及]

          注:[]是取整符號

          之后再選取甲或者乙來研究有關(guān)路程的關(guān)系,其中涉及到周期問題需要注意,不要把運動方向搞錯了。

          簡單例題:甲、乙兩車同時從A地出發(fā),在相距300千米的A、B兩地之間不斷往返行駛,已知甲車的速度是每小時30千米,乙車的速度是每小時20千 米。

          問(1)第二次迎面相遇后又經(jīng)過多長時間甲、乙追及相遇?

          (2)相遇時距離中點多少千米?(3)50小時內(nèi),甲乙兩車共迎面相遇多少次?

          三、火車問題

          特點無非是涉及到車長,相對容易。小題型分為:

          1、火車過橋(隧道):一個有長度、有速度,一個有長度、但沒速度,

          解法:火車車長+橋(隧道)長度(總路程) =火車速度×通過的時間;

          2、火車+樹(電線桿):一個有長度、有速度,一個沒長度、沒速度,

          解法:火車車長(總路程)=火車速度×通過時間;

          3、火車+人:一個有長度、有速度,一個沒長度、但有速度,

         。1)、火車+迎面行走的人:相當(dāng)于相遇問題,

          解法:火車車長(總路程) =(火車速度+人的速度)×迎面錯過的時間;

         。2)火車+同向行走的人:相當(dāng)于追及問題,

          解法:火車車長(總路程) =(火車速度-人的速度) ×追及的時間;

         。3)火車+坐在火車上的人:火車與人的相遇和追及問題

          解法:火車車長(總路程) =(火車速度±人的速度) ×迎面錯過的時間(追及的時間);

          4、火車+火車:一個有長度、有速度,一個也有長度、有速度,

         。1)錯車問題:相當(dāng)于相遇問題,

          解法:快車車長+慢車車長(總路程) =(快車速度+慢車速度) ×錯車時間;

          (2)超車問題:相當(dāng)于追及問題,

          解法:快車車長+慢車車長(總路程) =(快車速度-慢車速度) ×錯車時間;

          對于火車過橋、火車和人相遇、火車追及人以及火車和火車之間的相遇、追及等等這幾種類型的題目,在分析題目的時候一定得結(jié)合著圖來進行。

          四、流水行船問題

          理解了相對速度,流水行船問題也就不難了。理解記住1個公式:

          順?biāo)?靜水船速+水流速度,就可以順勢理解和推導(dǎo)出其他公式:

          逆水船速=靜水船速-水流速度,

          靜水船速=(順?biāo)?逆水船速)÷2,

          水流速度=(順?biāo)?逆水船 速)÷2。

          技巧性結(jié)論如下:

          (1)相遇追及。水流速度對于相遇追及的時間沒有影響,即對無論是同向還是相向的兩船的速度差不構(gòu)成“威脅”,大膽使用為善。

          (2)流水落物。漂流物速度=水流速度,t1= t2(t1:從落物到發(fā)現(xiàn)的時間段,t2:從發(fā)現(xiàn)到拾到的時間段)與船速、水速、順行逆行無關(guān)。此結(jié)論所帶來的時間等式常常非常容易的解決流水落物問題,其本身也非常容易記憶。

          例題:一條河上有甲、乙兩個碼頭,甲碼頭在乙碼頭的上游50千米處。一艘客船和一艘貨船分別從甲、乙兩碼頭同時出發(fā)向上游行駛,兩船的靜水速度相同。 客船出發(fā)時有一物品從船上落入水中,10分鐘后此物品距客船5千米?痛谛旭20千米后掉頭追趕此物品,追上時恰好和貨船相遇。求水流速度。

          五、間隔發(fā)車問題

          空間理解稍顯困難,證明過程對快速解題沒有幫助。一旦掌握了3個基本公式,一般問題都可以迎刃而解。

          (1)在班車?yán)。即柳卡問題。不用基本公式解決,快速的解法是直接畫時間-距離圖,再畫上密密麻麻的交叉線,按要求數(shù)交點個數(shù)即可完成。

          例題:A、B是公共汽車的兩個車站,從A站到B站是上坡路。每天上午8點到11點從A、B兩站每隔30分同時相向發(fā)出一輛公共汽車。已知從A站到B站 單程需要105分鐘,從B站到A站單程需要80分鐘。問8:30、9:00從A站發(fā)車的司機分別能看到幾輛從B站開來的汽車?

          (2)在班車外。聯(lián)立3個基本公式好使。

          汽車間距=(汽車速度+行人速度)×相遇事件時間間隔

          汽車間距=(汽車速度-行人速度)×追及事件時間間隔

          汽車間距=汽車速度×汽車發(fā)車時間間隔

          1、2合并理解,即

          汽車間距=相對速度×?xí)r間間隔

          分為2個小題型:

          1、一般間隔發(fā)車問題。用3個公式迅速作答;

          2、求到達目的地后相遇和追及的公共汽車的輛數(shù)。標(biāo)準(zhǔn)方法是:畫圖-盡可能多的列3個好使公式-結(jié)合s全程=v×t-結(jié)合植樹問題數(shù)數(shù)。

          例題:小峰在騎自行車去小寶家聚會的路上注意到,每隔9分鐘就有一輛公交車從后方超越小峰。小峰騎車到半路車壞了,于是只好坐出租車去小寶家。這時小 峰又發(fā)現(xiàn)出租車也是每隔9分鐘超越一輛公交車,已知出租車的速度是小峰騎車速度的5倍,如果這3種車輛在行駛過程中都保持勻速,那么公交車站每隔多少分鐘 發(fā)一輛車?

          六、平均速度問題

          相對容易的題型。大公式要牢牢記。嚎偮烦=平均速度×總時間。用s=v×t寫出相應(yīng)的比要比直接寫比例式好理解并且規(guī)范,形成行程問題的統(tǒng)一解決方案。

          七、環(huán)形跑道問題

          是一類有挑戰(zhàn)性和難度的題型,分為“同一路徑”、“不同路徑”、“真實相遇”、“能否看到”等小題 型。其中涉及到周期問題、幾何位置問題(審題不仔細容易漏掉多種位置可能)、不等式問題(針對“能否看到”問題,即問甲能否在線段的拐角處看到乙)。

          八、鐘表問題

          是環(huán)形問題的特定引申;娟P(guān)系式:v分針= 12v時針

          (1)總結(jié)記憶:時針每分鐘走1/12格,0.5°;分針每分鐘走1格,6°。時針和分針“半”天共重合11次,成直線共11次,成直角共22次(都在什么位置需要自己拿表畫圖總結(jié))。

          (2)基本解題思路:路程差思路。即

          格或角(分針)=格或角(時針)+格或角(差)

          格:x=x/12+(開始時落后時針的格+終止時超過時針的格)

          角:6x=x/2+(開始時落后時針的角度+終止時超過時針的角度)

          可以解決大部分時針問題的題型,包括重合、成直角、成直線、成任意角度、在哪兩個格中間,和哪一個時刻形成多少角度。

          例題:在9點23分時,時針和分針的夾角是多少度?從這一時刻開始,經(jīng)過多少分鐘,時針和分針第一次垂直?

          (3)壞鐘問題。所用到的解決方法已經(jīng)不是行程問題了,變成比例問題了,有相應(yīng)的比例公式。

          九、自動扶梯問題

          仍然用基本關(guān)系式s扶梯級數(shù)=(v人±v扶梯)×t上或下解決。這里的路程單位全部是“級”,唯一要注意的是t上或下要表示成實際走的級數(shù)/人的速度。

          例題:商場的自動扶梯以勻速由下往上行駛,兩個孩子在行駛的扶梯上上下走動,女孩由下向上走,男孩由上向下走,結(jié)果女孩走了40級到達樓上,男孩走了80級到達樓下。如果男孩單位時間內(nèi)走的扶梯級數(shù)是女孩的2倍,則當(dāng)該扶梯靜止時,可看到的扶梯梯級有多少級?

          十、十字路口問題

          即在不同方向上的行程問題。沒有特殊的解題技巧,只要老老實實把圖畫對,再通過幾何分析就可以解決。在正方形或長方形道路上的行程問題。

          十一、校車問題

          就是這樣一類題:隊伍多,校車少,校車來回接送,隊伍不斷步行和坐車,最終同時到達目的地(即到達目的地的最短時間,不要求證明)分4種小題型:根據(jù)校車速度(來回不同)、班級速度(不同班不同速)、班數(shù)是否變化分類。

          (1)車速不變-班速不變-班數(shù)2個(最常見)

          (2)車速不變-班速不變-班數(shù)多個

          (3)車速不變-班速變-班數(shù)2個

          (4)車速變-班速不變-班數(shù)2個

          標(biāo)準(zhǔn)解法:畫圖-列3個式子:

          1、總時間=一個隊伍坐車的時間+這個隊伍步行的時間;

          2、班車走的總路程;

          3、一個隊伍步行的時間=班車同時出發(fā)后回 來接它的時間。

          最后會得到幾個路程段的比值,再根據(jù)所求代數(shù)即可。

          簡單例題:甲班與乙班學(xué)生同時從學(xué)校出發(fā)去15千米外的公園游玩,甲、乙兩班的步行速度都是每小時4千米。學(xué)校有一輛汽車,它的速度是每小時48千 米,這輛汽車恰好能坐一個班的學(xué)生。為了使兩班學(xué)生在最短時間內(nèi)到達公園,那么甲班學(xué)生與乙班學(xué)生需要步行的距離是多少千米?

          十二、保證往返類

          簡單例題:A、B兩人要到沙漠中探險,他們每天向沙漠深處走20千米,已知每人最多可以攜帶一 個人24天的食物和水。如果不準(zhǔn)將部分食物存放于途中,其中一個人最遠可深入沙漠多少千米(要求兩人返回出發(fā)點)?這類問題其實屬于智能應(yīng)用題類。建議推 導(dǎo)后記憶結(jié)論,以便考試快速作答。每人可以帶夠t天的食物,最遠可以走的時間T

          (1)返回類。(保證一個人走的最遠,所有人都要活著回來)

          1、兩人:如果中途不放食物:T=2/3t;如果中途放食物:T=3/4t。

          2、多人:

          (2)穿沙漠類(保證一個人穿過沙漠不回來了,其他人都要活著回來)共有n人(包括穿沙漠者)即多人助1人穿沙漠類。

          1、中途不放食物:T≤[2n/(n+1)]×t。T是穿沙漠需要的天數(shù)。

          2、中途放食物:T=(1+1/3+1/5+1/7+…+1/(2n-1))×t

        【小學(xué)數(shù)學(xué)畢業(yè)考試題型分析】相關(guān)文章:

        小學(xué)畢業(yè)考試題型有哪些10-16

        小學(xué)畢業(yè)考試題數(shù)學(xué)10-16

        小學(xué)數(shù)學(xué)畢業(yè)考試卷10-15

        小學(xué)畢業(yè)考試卷數(shù)學(xué)及答案10-15

        小學(xué)數(shù)學(xué)畢業(yè)考試題及答案10-16

        小學(xué)數(shù)學(xué)的應(yīng)用題題型參考04-04

        房地產(chǎn)估價案例與分析題型考點分析03-03

        考研英語主觀題題型分析10-27

        GRE閱讀題型分析及解題技巧02-17

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>