1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 小升初數學應用題及答案

        時間:2024-08-13 15:06:22 小升初 我要投稿

        2017小升初數學應用題及答案

          想要小學數學得高分,歸類總結一定不能少。除了平時多加練習之外,還應該注意各類應用題的題型歸總。下面是常見的經典應用題,還包含答案哦!

        2017小升初數學應用題及答案

          1. 李軍和張強付同樣多的錢買了同一種鉛筆,李軍要了13支,張強要了7支,李軍又給張強0.6元錢。每支鉛筆多少錢?

          解題思路:

          根據兩人付同樣多的錢買同一種鉛筆和李軍要了13支,張強要了7支,可知每人應該得(13+7)÷2支,而李軍要了13支比應得的多了3支,因此又給張強0.6元錢,即可求每支鉛筆的價錢。

          答題:

          解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)

          答:每支鉛筆0.2元。

          2.已知一張桌子的價錢是一把椅子的10倍,又知一張桌子比一把椅子多288元,一張桌子和一把椅子各多少元?

          解題思路:

          由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價錢的(10-1)倍,由此可求得一把椅子的價錢。再根據椅子的價錢,就可求得一張桌子的價錢。

          答題:

          解:一把椅子的價錢:

          288÷(10-1)=32(元)

          一張桌子的價錢:

          32×10=320(元)

          答:一張桌子320元,一把椅子32元。

          3. 3箱蘋果重45千克。一箱梨比一箱蘋果多5千克,3箱梨重多少千克?

          解題思路:

          可先求出3箱梨比3箱蘋果多的重量,再加上3箱蘋果的重量,就是3箱梨的重量。

          答題:

          解:45+5×3=45+15=60(千克)

          答:3箱梨重60千克。

          4. 甲乙二人從兩地同時相對而行,經過4小時,在距離中點4千米處相遇。甲比乙速度快,甲每小時比乙快多少千米?

          解題思路:

          根據在距離中點4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經過4小時相遇。即可求甲比乙每小時快多少千米。

          答題:

          解:4×2÷4=8÷4=2(千米)

          答:甲每小時比乙快2千米。

          5. 甲乙兩輛客車上午8時同時從兩個車站出發,相向而行,經過一段時間,兩車同時到達一條河 的兩岸。由于河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然后按原路返回各自出發的車站,到站時已是下午2點。甲車每小時行40千米,乙車每小時行 45千米,兩地相距多少千米?(交換乘客的時間略去不計)

          解題思路:

          根據已知兩車上午8時從兩站出發,下午2點返回原車站,可求出兩車所行駛的時間。根據兩車的速度和行駛的時間可求兩車行駛的總路程。

          答題:

          解:下午2點是14時。

          往返用的時間:14-8=6(時)

          兩地間路程:(40+45)×6÷2=85×6÷2=255(千米)

          答:兩地相距255千米。

          6. 學校組織兩個課外興趣小組去郊外活動。第一小組每小時走4.5千米,第二小組每小時行3.5千米。兩組同時出發1小時后,第一小組停下來參觀一個果園,用了1小時,再去追第二小組。多長時間能追上第二小組?

          解題思路:

          第一小組停下來參觀果園時間,第二小組多行了[3.5-(4.5-3.5)]千米,也就是第一組要追趕的路程。又知第一組每小時比第二組快(4.5-3.5)千米,由此便可求出追趕的時間。

          答題:

          解:第一組追趕第二組的路程:

          3.5-(4.5-3.5)=3.5-1=2.5(千米)

          第一組追趕第二組所用時間:

          2.5÷(4.5-3.5)=2.5÷1=2.5(小時)

          答:第一組2.5小時能追上第二小組。

          7. 有甲乙兩個倉庫,每個倉庫平均儲存糧食32.5噸。甲倉的存糧噸數比乙倉的4倍少5噸,甲、乙兩倉各儲存糧食多少噸?

          解題思路:

          根據甲倉的存糧噸數比乙倉的4倍少5噸,可知甲倉的存糧如果增加5噸,它的存糧噸數就是乙倉的4倍,那樣總存糧數也要增加5噸。若把乙倉存糧噸數看作1倍,總存糧噸數就是(4+1)倍,由此便可求出甲、乙兩倉存糧噸數。

          答題:

          解:乙倉存糧:

          (32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(噸)

          甲倉存糧:

          14×4-5=56-5=51(噸)

          答:甲倉存糧51噸,乙倉存糧14噸。

          8. 甲、乙兩隊共同修一條長400米的公路,甲隊從東往西修4天,乙隊從西往東修5天,正好修完,甲隊比乙隊每天多修10米。甲、乙兩隊每天共修多少米?

          解題思路:

          根據甲隊每天比乙隊多修10米,可以這樣考慮:如果把甲隊修的4天看作和乙隊4天修的同樣多,那么總長度就減少4個10米,這時的長度相當于乙(4+5)天修的。由此可求出乙隊每天修的米數,進而再求兩隊每天共修的米數。

          答題:

          解:乙每天修的米數:

          (400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)

          甲乙兩隊每天共修的米數:

          40×2+10=80+10=90(米)

          答:兩隊每天修90米。

          9. 學校買來6張桌子和5把椅子共付455元,已知每張桌子比每把椅子貴30元,桌子和椅子的單價各是多少元?

          解題思路:

          已知每張桌子比每把椅子貴30元,如果桌子的單價與椅子同樣多,那么總價就應減少30×6元,這時的總價相當于(6+5)把椅子的價錢,由此可求每把椅子的單價,再求每張桌子的單價。

          答題:

          解:每把椅子的價錢:

          (455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)

          每張桌子的價錢:

          25+30=55(元)

          答:每張桌子55元,每把椅子25元。

          10. 一列火車和一列慢車,同時分別從甲乙兩地相對開出?燔嚸啃r行75千米,慢車每小時行65千米,相遇時快車比慢車多行了40千米,甲乙兩地相距多少千米?

          解題思路:

          根據已知的兩車的速度可求速度差,根據兩車的速度差及快車比慢車多行的路程,可求出兩車行駛的時間,進而求出甲乙兩地的路程。

          答題:

          解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)

          答:甲乙兩地相距560千米。

          11. 某玻璃廠托運玻璃250箱,合同規定每箱運費20元,如果損壞一箱,不但不付運費還要賠償100元。運后結算時,共付運費4400元。托運中損壞了多少箱玻璃?

          解題思路:

          根據已知托運玻璃250箱,每箱運費20元,可求出應付運費總錢數。根據每損壞一箱,不但不付運費還要賠償100元的條件可知,應付的錢數和實際付的錢數的差里有幾個(100+20)元,就是損壞幾箱。

          答題:

          解:(20×250-4400)÷(10+20)=600÷120=5(箱)

          答:損壞了5箱。

          12. 五年級一中隊和二中隊要到距學校20千米的地方去春游。第一中隊步行每小時行4千米,第二中隊騎自行車,每小時行12千米。第一中隊先出發2小時后,第二中隊再出發,第二中隊出發后幾小時才能追上一中隊?

          解題思路:

          因第一中隊早出發2小時比第二中隊先行4×2千米,而每小時第二中隊比第一中隊多行(12-4)千米,由此即可求第二中隊追上第一中隊的時間。

          答題:

          解:4×2÷(12-4)=4×2÷8 =1(時)

          答:第二中隊1小時能追上第一中隊。

          13. 某廠運來一堆煤,如果每天燒1500千克,比計劃提前一天燒完,如果每天燒1000千克,將比計劃多燒一天。這堆煤有多少千克?

          解題思路:

          由已知條件可知道,前后燒煤總數量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原計劃燒的天數,進而再求出這堆煤的數量。

          答題:

          解:原計劃燒煤天數:

          (1500+1000)÷(1500-1000)=2500÷500=5(天)

          這堆煤的重量:

          1500×(5-1)=1500×4=6000(千克)

          答:這堆煤有6000千克。

          14. 媽媽讓小紅去商店買5支鉛筆和8個練習本,按價錢給小紅3.8元錢。結果小紅卻買了8支鉛筆和5本練習本,找回0.45元。求一支鉛筆多少元?

          解題思路:

          小紅打算買的鉛筆和本子總數與實際買的鉛筆和本子總數量是相等的,找回0.45 元,說明(8-5)支鉛筆當作(8-5)本練習本計算,相差0.45元。由此可求練習本的單價比鉛筆貴的錢數。從總錢數里去掉8個練習本比8支鉛筆貴的錢 數,剩余的則是(5+8)支鉛筆的錢數。進而可求出每支鉛筆的價錢。

          答題:

          解:每本練習本比每支鉛筆貴的錢數:

          0.45÷(8-5)=0.45÷3=0.15(元)

          8個練習本比8支鉛筆貴的錢數:

          0.15×8=1.2(元)

          每支鉛筆的價錢:

          (3.8-1.2)÷(5+8)=2.6÷13=0.2(元)

          答:每支鉛筆0.2元。

          15. 學校組織外出參觀,參加的師生一共360人.一輛大客車比一輛卡車多載10人,6輛大客車和8輛卡車載的人數相等.都乘卡車需要幾輛?都乘大客車需要幾輛?

          解題思路:

          根據一輛客車比一輛卡車多載10人,可求6輛客車比6輛卡車多載的人數,即多用的(8-6)輛卡車所載的人數,進而可求每輛卡車載多少人和每輛大客車載多少人。

          答題:

          解:卡車的數量:

          360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(輛)

          客車的數量:

          360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(輛)

          答:可用卡車12輛,客車9輛。

          16. 某筑路隊承擔了修一條公路的任務。原計劃每天修720米,實際每天比原計劃多修80米,這樣實際修的差1200米就能提前3天完成。這條公路全長多少米?

          解題思路:

          根據計劃每天修720米,這樣實際提前的長度是(720×3-1200)米。根據每天多修80米可求已修的天數,進而求公路的全長。

          答題:

          解:已修的天數:

          (720×3-1200)÷80=960÷80=12(天)

          公路全長:

          (720+80)×12+1200=800×12+1200=9600+1200=10800(米)

          答:這條公路全長10800米。

          17. 某鞋廠生產1800雙鞋,把這些鞋分別裝入12個紙箱和4個木箱。如果3個紙箱加2個木箱裝的鞋同樣多。每個紙箱和每個木箱各裝鞋多少雙?

          解題思路:

          根據已知條件,可求12個紙箱轉化成木箱的個數,先求出每個木箱裝多少雙,再求每個紙箱裝多少雙。

          答題:

          解:12個紙箱相當木箱的個數:

          2×(12÷3)=2×4=8(個)

          一個木箱裝鞋的雙數:

          1800÷(8+4)=18000÷12=150(雙)

          一個紙箱裝鞋的雙數:

          150×2÷3=100(雙)

          答:每個紙箱可裝鞋100雙,每個木箱可裝鞋150雙。

          18. 某工地運進一批沙子和水泥,運進沙子袋數是水泥的2倍。每天用去30袋水泥,40袋沙子,幾天以后,水泥全部用完,而沙子還剩120袋,這批沙子和水泥各多少袋?

          解題思路:

          由已知條件可知道,每天用去30袋水泥,同時用去30×2袋沙子,才能同時用完。但現在每天只用去40袋沙子,少用(30×2-40)袋,這樣才累計出120袋沙子。因此看120袋里有多少個少用的沙子袋數,便可求出用的天數。進而可求出沙子和水泥的總袋數。

          題:

          解:水泥用完的天數:

          120÷(30×2-40)=120÷20=6(天)

          水泥的總袋數:

          30×6=180(袋)

          沙子的總袋數:

          180×2=360(袋)

          答:運進水泥180袋,沙子360袋。

          19. 學校里買來了5個保溫瓶和10個茶杯,共用了90元錢。每個保溫瓶是每個茶杯價錢的4倍,每個保溫瓶和每個茶杯各多少元?

          解題思路:

          根據每個保溫瓶的價錢是每個茶杯的4倍,可把5個保溫瓶的價錢轉化為20個茶杯的價錢。這樣就可把5個保溫瓶和10個茶杯共用的90元錢,看作30個茶杯共用的錢數。

          答題:

          解:每個茶杯的價錢:

          90÷(4×5+10)=3(元)

          每個保溫瓶的價錢:

          3×4=12(元)

          答:每個保溫瓶12元,每個茶杯3元。

          20. 兩個數的和是572,其中一個加數個位上是0,去掉0后,就與第二個加數相同。這兩個數分別是多少?

          解題思路:

          已知一個加數個位上是0,去掉0,就與第二個加數相同,可知第一個加數是第二個加數的10倍,那么兩個加數的和572,就是第二個加數的(10+1)倍。

          答題:

          解:第一個加數:

          572÷(10+1)=52

          第二個加數:

          52×10=520

          答:這兩個加數分別是52和520。

          21. 一桶油連桶重16千克,用去一半后,連桶重9千克,桶重多少千克?

          解題思路:

          由已知條件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

          答題:

          解:9-(16-9)=9-7=2(千克)

          答:桶重2千克。

          22. 一桶油連桶重10千克,倒出一半后,連桶還重5.5千克,原來有油多少千克?

          解題思路:

          由已知條件可知,10千克與5.5千克的差正好是半桶油的重量,再乘以2就是原來油的重量。

          答題:

          解:(10-5.5)×2=9(千克)

          答:原來有油9千克。

          23. 用一只水桶裝水,把水加到原來的2倍,連桶重10千克,如果把水加到原來的5倍,連桶重22千克。桶里原有水多少千克?

          解題思路:

          由已知條件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

          答題:

          解:(22-10)÷(5-2)=12÷3=4(千克)

          答:桶里原有水4千克。

          24. 小紅和小華共有故事書36本。如果小紅給小華5本,兩人故事書的本數就相等,原來小紅和小華各有多少本?

          解題思路:

          從“小紅給小華5本,兩人故事書的本數就相等”這一條件,可知小紅比小華多(5×2)本書,用共有的36本去掉小紅比小華多的本數,剩下的本數正好是小華本數的2倍。

          答題:

          解:小華有書的本數:

          (36-5×2)÷2=13(本)

          小紅有書的本數:

          13+5×2=23(本)

          答:原來小紅有23本,小華有13本。

          25. 有5桶油重量相等,如果從每只桶里取出15千克,則5只桶里所剩下油的重量正好等于原來2桶油的重量。原來每桶油重多少千克?

          解題思路:

          由已知條件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原來2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

          答題:

          解:15×5÷(5-2)=25(千克)

          答:原來每桶油重25千克。

          26. 把一根木料鋸成3段需要9分鐘,那么用同樣的速度把這根木料鋸成5段,需要多少分?

          解題思路:

          把一根木料鋸成3段,只鋸出了(3-1)個鋸口,這樣就可以求出鋸出每個鋸口所需要的時間,進一步即可以求出鋸成5段所需的時間。

          答題:

          解:9÷(3-1)×(5-1)=18(分)

          答:鋸成5段需要18分鐘。

          27. 一個車間,女工比男工少35人,男、女工各調出17人后,男工人數是女工人數的2倍。原有男工多少人?女工多少人?

          解題思路:

          女工比男工少35人,男、女工各調出17人后,女工仍比男工少35人。這時男工人數是女工人數的2倍,也就是說少的35人是女工人數的(2-1)倍。這樣就可求出現在女工多少人,然后再分別求出男、女工原來各多少人。

          答題:

          解:35÷(2-1)=35(人

          女工原有:

          35+17=52(人)

          男工原有:

          52+35=87(人)

          答:原有男工87人,女工52人。

          28. 李強騎自行車從甲地到乙地,每小時行12千米,5小時到達,從乙地返回甲地時因逆風多用1小時,返回時平均每小時行多少千米?

          解題思路:

          由每小時行12千米,5小時到達可求出兩地的路程,即返回時所行的路程。由去時5小時到達和返回時多用1小時,可求出返回時所用時間。

          答題:

          解:12×5÷(5+1)=10(千米)

          答:返回時平均每小時行10千米。

          29. 甲、乙二人同時從相距18千米的兩地相對而行,甲每小時行走5千米,乙每小時走4千米。如果甲帶了一只狗與甲同時出發,狗以每小時8千米的速度向乙跑去,遇到乙立即回頭向甲跑去,遇到甲又回頭向飛跑去,這樣二人相遇時,狗跑了多少千米?

          解題思路:

          由題意知,狗跑的時間正好是二人的相遇時間,又知狗的速度,這樣就可求出狗跑了多少千米。

          答題:

          解:18÷(5+4)=2(小時)

          8×2=16(千米)

          答:狗跑了16千米。

          30. 有紅、黃、白三種顏色的球,紅球和黃球一共有21個,黃球和白球一共有20個,紅球和白球一共有19個。三種球各有多少個?

          解題思路:

          由條件知,(21+20+19)表示三種球總個數的2倍,由此可求出三種球的總個數,再根據題目中的條件就可以求出三種球各多少個。

          答題:

          解:總個數:

          (21+20+19)÷2=30(個)

          白球:30-21=9(個)

          紅球:30-20=10(個)

          黃球:30-19=11(個)

          答:白球有9個,紅球有10個,黃球有11個。

          31. 在一根粗鋼管上接細鋼管。如果接2根細鋼管共長18米,如果接5根細鋼管共長33米。一根粗鋼管和一根細鋼管各長多少米?

          解題思路:

          根據題意,33米比18米長的米數正好是3根細鋼管的長度,由此可求出一根細鋼管的長度,然后求一根粗鋼管的長度。

          答題:

          解:(33-18)÷(5-2)=5(米)

          18-5×2=8(米)

          答:一根粗鋼管長8米,一根細鋼管長5米。

          32. 水泥廠原計劃12天完成一項任務,由于每天多生產水泥4.8噸,結果10天就完成了任務,原計劃每天生產水泥多少噸?

          解題思路:

          由題意知,實際10天比原計劃10天多生產水泥(4.8×10)噸,而多生產的這些水泥按原計劃還需用(12-10)天才能完成,也就是說原計劃(12-10)天能生產水泥(4.8×10)噸。

          答題:

          解:4.8×10÷(12-10)=24(噸)

          答:原計劃每天生產水泥24噸。

          33. 學校舉辦歌舞晚會,共有80人參加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?

          解題思路:

          由題意知,實際10天比原計劃10天多生產水泥(4.8×10)噸,而多生產的這些水泥按原計劃還需用(12-10)天才能完成,也就是說原計劃(12-10)天能生產水泥(4.8×10)噸。

          答題:

          解:4.8×10÷(12-10)=24(噸)

          答:原計劃每天生產水泥24噸。

          34. 學校舉辦語文、數學雙科競賽,三年級一班有59人,參加語文競賽的有36人,參加數學競賽的有38人,一科也沒參加的有5人。雙科都參加的有多少人?

          解題思路:

          參加語文競賽的36人中有參加數學競賽的,同樣參加數學競賽的38人中也有參加語 文競賽的,如果把兩者加起來,那么既參加語文競賽又參加數學競賽的人數就統計了兩次,所以將參加語文競賽的人數加上參加數學競賽的人數再加上一科也沒參加 的人數減去全班人數就是雙科都參加的人數。

          答題:

          解:36+38+5-59=20(人)

          答:雙科都參加的有20人。

          35. 學校買了4張桌子和6把椅子,共用640元。2張桌子和5把椅子的價錢相等,桌子和椅子的單價各是多少元?

          解題思路:

          由“2張桌子和5把椅子的價錢相等”這一條件,可以推出4張桌子就相當于10把椅子的價錢,買4張桌子和6把椅子共用640元,也就相當于買16把椅子共用640元。

          答題:

          解:5×(4÷2)+6=16(把)

          640÷16=40(元)

          40×5÷2=10O(元)

          答:桌子和椅子的單價分別是100元、40元。

          36. 父親今年45歲,5年前父親的年齡是兒子的4倍,今年兒子多少歲?

          解題思路:

          5年前父親的年齡是(45-5)歲,兒子的年齡是(45-5)÷4歲,再加上5就是今年兒子的年齡。

          答題:

          解:(45-5)÷4+5 =10+5 =15(歲)

          答:今年兒子15歲。

          37. 有兩桶油,甲桶油重是乙桶油重的4倍,如果從甲桶倒入乙桶18千克,兩桶油就一樣重,原來每桶各有多少千克油?

          解題思路:

          “如果從甲桶倒入乙桶18千克,兩桶油就一樣重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。

          答題:

          解:18×2÷(4-1)=12(千克)

          12×4=48(千克)

          答:原來甲桶有油48千克,乙桶有油12千克。

          38. 光明小學舉辦數學知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?

          解題思路:

          根據題意,20題全部答對得100分,答錯一題將失去(5+3)分,而不答僅失去5分。小麗共失去(100-79)分。再根據(100-79)÷8=2(題)……5(分),分析答對、答錯和沒答的題數。

          答題:

          解:(5×20-75)÷8=2(題)……5(分)

          20-2-1=17(題)

          答:答對17題,答錯2題,有1題沒答。

          39. 光明小學舉辦數學知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?

          解題思路:

          “從兩車頭相遇到兩車尾相離”,兩車所行的路程是兩車身長之和,即(240+264)米,速度之和為(20+16)米。根據路程、速度和時間的關系,就可求得所需時間。

          答題:

          解:(240+264)÷(20+16)=504÷30 =14(秒)

          答:從兩車頭相遇到兩車尾相離,需要14秒。

          40. 一列火車長600米,通過一條長1150米的隧道,已知火車的速度是每分700米,問火車通過隧道需要幾分?

          解題思路:

          火車通過隧道是指從車頭進入隧道到車尾離開隧道,所行的路程正好是車身與隧道長度之和。

          答題:

          解:(600+1150)÷700 =1750÷700 =2.5(分)

          答:火車通過隧道需2.5分。

          41.小明從家里到學校,如果每分走50米,則正好到上課時間;如果每分走60米,則離上課時間還有2分。問小明從家里到學校有多遠?

          解題思路:

          在每分走50米的到校時間內按兩種速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,這就可求出小明按每分50米的到校時間。

          答題:

          解:60×2÷(60-50)=12(分)

          50×12=600(米)

          答:小明從家里到學校是600米。

          42.有一周長600米的環形跑道,甲、乙二人同時、同地、同向而行,甲每分鐘跑300米,乙每分鐘跑400米,經過幾分鐘二人第一次相遇?

          解題思路:

          由已知條件可知,二人第一次相遇時,乙比甲多跑一周,即600米,又知乙每分鐘比甲多跑(400-300)米,即可求第一次相遇時經過的時間。

          答題:

          解:600÷(400-300)=600÷100 =6(分)

          答:經過6分鐘兩人第一次相遇。

          43.有一個長方形紙板,如果只把長增加2厘米,面積就增加8平方米;如果只把寬增加2厘米,面積就增加12平方厘米。這個長方形紙板原來的面積是多少?

          解題思路:

          由“只把寬增加2厘米,面積就增加12平方厘米”,可求出原來的長是:(12÷2)厘米,同理原來的寬就是(8÷2)厘米,求出長和寬,就能求出原來的面積。

          答題:

          解:(12÷2)×(8÷2)=24(平方厘米)

          答:這個長方形紙板原來的面積是24平方厘米。

          44.媽媽買蘋果和梨各3千克,付出20元找回7.4元。每千克蘋果2.4元,每千克梨多少元?

          解題思路:

          用去的錢數除以3就是1千克蘋果和1千克梨的總錢數。從這個總錢數里去掉1千克蘋果的錢數,就是每千克梨的錢數。

          答題:

          解:(20-7.4)÷3-2.4 =12.6÷3-2.4 =4.2-2.4 =1.8(元)

          答:每千克梨1.8元。

          45.甲乙兩人同時從相距135千米的兩地相對而行,經過3小時相遇。甲的速度是乙的2倍,甲乙兩人每小時各行多少千米?

          解題思路:

          由題意知,甲乙速度和是(135÷3)千米,這個速度和是乙的速度的(2+1)倍。

          答題:

          解:135÷3÷(2+1)=15(千米)

          15×2=30(千米)

          答:甲乙每小時分別行30千米、15千米。


        【小升初數學應用題及答案】相關文章:

        2017年小升初數學應用題及答案資料02-25

        2017小升初數學50道經典應用題及答案07-30

        小升初數學應用題復習10-28

        2018小升初經典應用題及答案02-23

        小學數學的應用題及答案09-21

        小升初數學應用題專項復習試題10-12

        小學數學應用題帶答案09-21

        小學數學應用題大全及答案10-21

        小升初數學相遇問題習題及答案06-08

        小升初數學能力訓練試題及答案02-25

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>