- 模具鋼的力學性能要求 推薦度:
- 相關推薦
模具的力學性能要求
模具除其本身外,還需要模座、模架、模芯導致制件頂出裝置等,這些部件一般都制成通用型。下面,小編為大家分享模具的力學性能要求,希望對大家有所幫助!
硬度
硬度表征了鋼對變形和接觸應力的抗力。測硬度的試樣易于制備,車間、試驗室一般都配備有硬度計,因此,硬度是很容易測定的一種性能,而且硬度與強度也有一定關系,可通過硬度強度換算關系得到材料硬度值。按硬度范圍劃定的模具類別,如高硬度(52~60HRC),一般用于冷作模具,中等硬度(40~52HRC),一般用于熱作模具。
鋼的硬度與成分和組織均有密切關系,通過熱處理,可以獲得很寬的硬度變化范圍。如新型模具鋼012Al和CG-2可分別采用低溫回火處理后硬度為60~62HRC,采用高溫回火處理后硬度為50~52HRC,因此可用來制作硬度要求不同的冷、熱作模具。因而這類模具鋼可稱為冷作、熱作兼用型模具鋼。
模具鋼中除馬氏體基體外,還存在更高硬度的其他相,如碳化物、金屬間化合物等。表l為常見碳化物及合金相的硬度值。
模具鋼的硬度主要取決于馬氏體中溶解的碳量(或含氮量),馬氏體中的含碳量取決于奧氏體化溫度和時間。當溫度和時間增加時,馬氏體中的含碳量增多馬氏體硬度會增加,但淬火加熱溫度過高會使奧氏體晶粒增大,淬火后殘留奧氏體量增多,又會導致硬度下降。因此,為選擇最佳淬火溫度,通常要先作出該鋼的淬火溫度—晶粒度—硬度關系曲線。
馬氏體中的含碳量在一定程度上與鋼的合金化程度有關,尤其當回火時表現更明顯。隨回火溫度的增高,馬氏體中的含碳量在減少,但當鋼中合金含量越高時,由于獼散的合金碳化物折出及殘留奧氏體向馬氏體的轉變,所發生的二次硬化效應越明顯,硬化峰值越高。
常用硬度測量方法有以下幾種:
1.洛氏硬度(HR) 是最常用的一種硬度測量法,測量簡便、迅速,數值可以從表盤上直接選出。洛氏硬度常用三種刻度,即HRC、HRA、HRB。
2.布氏硬度(HB) 用淬火鋼球作硬度頭,加上一定試驗力壓人工件表面,試驗力卸掉以后測量壓痕直徑大小,再查表或計算,使得出相應的布氏硬度值HB。
布氏硬度測試主要用于退火、正火、調質等模具鋼的硬度測定。
3.維氏硬度(HV) 采用的壓頭是具有正方形底面的金剛石角錐體,錐體相對兩面間的夾角為136°,硬度值等于試驗力F與壓痕表面積之比值。
此法可以測試任何金屬材料的硬度,但最常用于測定顯微硬度,即金屬內部不同組織的硬度。
三種硬度大致有如下的關系:HRC≈1/10HB,HV≈HB(當<400HBS時)
常規力學性能
模具材料的性能是由模具材料的成分和熱處理后的組織所決定的。模具鋼的基本組織是由馬氏體基體以及在基體上分布著的碳化物和金屬間化合物等構成。
模具鋼的性能應該滿足某種模具完成額定工作量所具備的性能,但因各類模具使用條件及所完成的額定工作量指標均不相同,故對模具性能要求也不同。又因為不同鋼的化學成分和組織對各種性能的影響不同,即使同一牌號的鋼也不可能同時獲得各種性能的最佳值,一般某些性能的改善會損失其他的性能。因而,模具工作者常根據模具工作條件及工作定額要求選用模具鋼及最佳處理工藝,使之達到主要性能最優,而其他性能損失最小的目的。
對各類模具鋼提出的性能要求主要包括:硬度、強度、塑性和韌性等。
強度
強度即鋼材在服役過程中,抵抗變形和斷裂的能力。對于模具來說則是整個型面或各個部位在服役過程中抵抗拉伸力、壓縮力、彎曲力、扭轉力或綜合力的能力。
衡量鋼材強度常用的方法是進行拉伸試驗。拉伸試驗是在拉伸試驗機上進行的,試棒需按規定的標準制備,拉伸過程中在記錄紙上繪出拉伸力F與伸長量ΔL之間的關系圖,即所謂的拉伸曲線圖,分析拉伸曲線圖就可以得出金屬的強度指標。對于在壓縮條件下工作的模具,還經常給出抗壓強度。
對于模具鋼,特別是含碳量高的冷作模具鋼,因塑性很差,一般不用抗拉強度而是以抗彎強度作為實用指標?箯澰囼炆踔翆O脆的材料也能反映出一定的塑性。而且,彎曲試驗產生的應力狀態與許多模具工作表面產生的應力狀態極相似,能比較精確地反映出材料的成分及組織因素對性能的影響。
在拉伸曲線圖上有一個特殊點,當拉力到達這一點時,試棒在拉力不增加或有所下降情況下發生明顯伸長變形,這種現象稱為屈服。這時的應力稱為這種材料的屈服點。而當外力去除后不能恢復原狀的變形,這部分變形被保留下來,成為永久變形,稱為塑性變形。屈服點是衡量模具鋼塑性變形抗力的指標,也是最常用的強度指標。對模具材料要求具有高的屈服強度,如果模具產生了塑性變形,那么模具加工出來的零件尺寸和形狀就會發生變化,產生廢品,模具也就失效了。
塑性
淬硬的模具鋼塑性較差,尤其是冷變形模具鋼,在很小的塑性變形時即發生脆斷。衡量模具鋼塑性好壞,通常采用斷后伸長率和斷面收縮率兩個指標表示。
斷后伸長率是指拉伸試樣拉斷以后長度增加的相對百分數,以δ表示。斷后伸長率δ數值越大,表明鋼材塑性越好。熱模鋼的塑性明顯高于冷模鋼。
斷面收縮率是指拉伸試棒經拉伸變形和拉斷以后,斷裂部分截面的縮小量與原始截面之比,以ψ表示。塑性材料拉斷以后有明顯的縮頸,所以ψ值較大。而脆性材料拉斷后,截面幾乎沒有縮小,即沒有縮頸產生,ψ值很小,說明塑性很差。
韌性
韌性是模具鋼的一種重要性能指標,韌性決定了材料在沖擊試驗力作用下對破裂的抗斷能力。材料的韌性越高,脆斷的危險性越小,熱疲勞強度也越高。對于衡量模具脆斷傾向,沖擊韌度試驗具有重要意義。
沖擊韌度是指沖擊試樣缺口處截面積上的沖擊吸收功,而沖擊吸收功是指規定形狀和尺寸的試樣在沖擊試驗力一次作用下折斷時所吸收的功。沖擊試驗有夏比U形缺口沖擊試驗(試樣開成U形缺口)、夏比V形缺口沖擊試驗(試樣開成V形缺口)以及艾式沖擊試驗。
影響沖擊韌度的因素很多。不同材質的模具鋼沖擊韌度相差很大,即使同一種材料,因組織狀態不同、晶粒大小不同、內應力狀態不同沖擊韌度也不相同。通常是晶粒越粗大,碳化物偏析越嚴重(帶狀、網狀等),馬氏體組織越粗大等都會促使鋼材變脆。溫度不同,沖擊韌度也不相同。一般情況是溫度越高沖擊韌度值越高,而有的鋼常溫下韌性很好,當溫度下降到零下20~40℃時會變成脆性鋼。
為了提高鋼的韌性,必須采取合理的鍛造及熱處理工藝。鍛造時應使碳化物盡量打碎,并減少或消除碳化物偏析,熱處理淬火時防止晶粒過于長大,冷卻速度不要過高,以防內應力產生。模具使用前或使用過程中應采取一些措施減少內應力。
特殊性能要求
由于模具種類繁多,工作條件差別很大,因此模具的常規性能及相互配合要求也各不相同,而且某種模具實際性能與試樣在特定條件下測得的數據也不一致。所以,除測定材料的常規性能外,還必須根據所模擬的實際工況條件,對模具使用特性進行測量,并對模具的特殊性能提出要求,建立起正確評價模具性能的體系。
對熱作模具必須測試在高溫條件下的硬度、強度和沖擊韌度。因為熱作模具是在某一特定溫度下服役,在室溫下測定的性能數據,當溫度升高時要發生變化。性能變化趨勢和速率相差也很大,如A種材料在室溫下硬度雖比材料B高,但隨溫度上升,硬度下降顯著,到達—定溫度后,硬度值反而會低于材料B。那么,當在較高溫度工作條件下要求耐磨性高時,就不能選用A種材料,而需選用室溫下硬度值雖較低但隨溫度上升,硬度下降緩慢的材料B。
對熱作模具除要求室主高溫條件下的硬度、強度、韌性外,還要求具有某些特殊性能。
熱穩定性
熱穩定性表征鋼在受熱過程中保持金相組織和性能的穩定能力。通常,鋼的熱穩定性用回火保溫4h,硬度降到45HRC時的最高加熱溫度表示。這種方法與材料的原始硬度有關,有資料將達到預定強度級別的鋼加熱,保溫2h,使硬度降到一般熱鍛模失效硬度35HRC的最高加熱溫度定為該鋼穩定性指標。對于因耐熱性不足而堆積塌陷失效的熱作模具,可以根據熱穩定性預測模具的壽命水平。
回火穩定性
回火穩定性指隨回火溫度升高,材料的強度和硬度下降快慢的程度,也稱回火抗力或抗回火軟化能力。通常以鋼的回火溫度-硬度曲線來表示,硬度下降慢則表示回火穩定性高或回火抗力大;鼗鸱定性也是與回火時組織變化相聯系的,它與鋼的熱穩定性共同表征鋼在高溫下的組織穩定性程度,表征模具在高溫下的變形抗力。
斷裂抗力
除常規力學性能如沖擊韌度、抗壓強度、抗彎強度等一次性斷裂抗力指標外,小能量多次沖擊斷裂抗力更切合冷作模具實際使用狀態性能。作為模具材料性能指標還包括抗壓疲勞強度、接觸疲勞強度等。這種疲勞斷裂抗力指標是由在一定循環應力下測得的斷裂循環次數,或在一定循環次數下導致斷裂的載荷來表征的。關于是否把斷裂韌度作為冷作模具材料的一項重要處能指標,尚待研究和探討。
抗咬合能力及抗軟化能力
抗咬合及抗軟化能力分別表征了模具對發生“冷焊”及承載時因溫度升高對硬度、耐磨性助抵抗能力。
熱疲勞抗力及斷裂韌度
熱疲勞抗力表征了材料熱疲勞裂紋萌生前的工作壽命和萌生后的擴展速率。熱疲勞通常以20℃—750℃條件下反復加熱冷卻時所發生裂紋的循環次數或當循環一定次數后測定裂紋長度來確定。熱疲勞抗力高的材料不易發生熱疲勞裂紋,或當裂紋萌生后,擴展量小、擴展緩慢。斷裂韌度則表征了裂紋失穩擴展抗力,斷裂韌度高,則裂紋不易發生失穩擴展。
高溫磨損與抗氧化性能
高溫磨損是熱作模具主要失效形式之一,正常情況下,絕大多數錘鍛模及壓力機模具都因磨損而失效?篃崮p是對熱作模具的使用性能的要求,是多種高溫力學性能的綜合體現,F在國內已有單位在自制的熱磨損機上進行模具熱磨損試驗,收到較理想的試驗效果。
實際使用表明,模具材料抗氧化性能的優劣,對模具使用壽命影響很大。因氧化會加劇模具工作過程中的磨損,導致模具型腔尺寸超差而報廢。氧化還會使模具表面產生腐蝕溝,成為熱疲勞裂紋起源.加劇模具熱疲勞裂紋的萌生與擴展。因此,要求模具具備一定的抗氧化性能。
對冷作模具鋼除常規力學性能外,還常要求具有下列性能:
耐磨性能,斷裂抗力,抗咬合計抗氧化能力。
耐磨損性能
冷作模具服役時,被成形的坯料會沿著模具表面既滑動又流動,在模具與坯料間產生很大摩擦力。這種摩擦力使模具表面受到切應力作用,在其表面劃刻出凹凸痕跡,這些痕跡與坯料不平整表面相咬合,逐漸在模具表面造成機械破損即磨損。冷作模具,特別是正常失效的冷作模具,多數因磨損而報廢。因此,對冷作模具最基本的要求之一就是耐磨性。一般條件下材料硬度越高,耐磨性越好。但耐磨性與在軟基體上存在的硬質點的形狀、分布也有很大關系。
冷作模具的磨損包括磨料磨損、粘著磨損、腐蝕磨損與疲勞磨損。
模具制造心得
它有著生產成本低廉、產品一致性較好的優勢,而且應用范圍很大,從簡單的碗盤等日常用品到復雜的雕塑等造型的創作和生產都離不開模具成型。它是陶瓷藝術工作者、陶瓷藝術愛好者所要著重掌握和了解的技能。我們這次的學習包括石膏漿的調制、同心圓造型、異型造型的車削翻模。了解石膏的材料特性,掌握使用方法步驟。并懂得陶瓷模種制作和翻制的方法步驟。
首先我們繪制好我們自己所想要的同心圓造型及異型造型。然后將圖紙擴印,根據圖紙來進行制作。
然后是制作模種了,利用準備好的工具在車模機上做出我們在圖紙上所畫出的同心圓瓶子的形狀,大小。然后根據中線進行手工削制,最后,用耐水砂紙打磨平滑。
制作石膏模型首先要調制石膏料。石膏料的調制方法簡單,首先準備好盆和石膏粉,然后在盆中先加入適量的水,再慢慢把石膏粉沿盆邊撒入水中,一定要按照順序先加水再加石膏。由于石膏料干固時間較短,而且要看天氣而定。
然后到掉浮在石灰上面的一層水后,用手在里面均勻的攪拌,直到石膏粉冒出水面不再自然吸水沉陷,稍等片刻,就繼續攪拌,要快速有力、用力均勻,成糊狀即可。覺得差不多以后,就要等上6分種左右。接下來就可以將石膏漿倒到事先已經用模板擋好的模型上
,需要等上一會兒,覺得石膏干濕適中后,就可以通過各種工具在上面進行適當的操作。大約幾分鐘后拆去模板,迅速用刮刀或鏟刀修出模型的大體形狀;修表時應先從整體入手,再進行局部的精雕細刻,修大形時速度要快、要趕在石膏完全因化之前,否則石膏完全固化后鏟削會很吃力。
其次是修形。修形是最關鍵的一步,不僅要有技巧,好要有耐心。先用小刀把初型進一步削修準確,接著用短鋸條刮削,再用鋸條北面進行刮削,這樣模型將進一步接近實物造型;對于一些有變化的小曲面來說,還需要把鋸條磨成小曲面的形狀進行刮削;最后用砂紙蘸水打磨。精修過程要由粗到細、由整體到局部再到整體,要不時地從各個角度和各個面去比較、去審視、去測量,這樣模型的整體感才強。如果模型表面有缺陷或邊角崩缺則需要修補,首先要濕潤需要修補處,然后用石膏漿填平,等干燥后打磨平整。
在做異形翻模時,我們用泥墊底,并圍好造型。模具邊上開牙口。在石膏模種上均勻涂抹脫模劑,然后用模板圍出模具的外緣。在有縫隙的地方用泥巴塞好。然后再把石膏漿倒進里面,要稍高出異性一些體積。等石膏差不多發熱干了再拆除模板。再用同種方法翻另外一塊。等模具翻制完成后,等石膏發熱反應冷卻了,就可以開模取出模種,如果不容易打開的話,可以用水沖泡然后輕輕搖動的方法打開。
以上便是我對這次模具制作過程的了解。
模型制作課程已經結束了,但是這其中經歷的東西,學到的知識會陪伴著我們,讓我們更好的解決以后面臨的問題。
我自認為在修造型的基礎還不夠,對翻模的操作也不夠熟練但我會更加努力爭取早日彌補自己的不足!
最后謝謝老師多日來的教導!
【模具的力學性能要求】相關文章:
模具鋼的力學性能要求08-03
模具圖紙技術要求05-27
模具產業現狀和對模具鋼的要求10-24
塑料模具主要性能的要求08-12
好鋼鑄好模,模具鋼必不可少的性能要求08-05
鈑金材料力學性能要點06-17
影響高錳鋼力學性能的幾個因素06-04
模具設計的塑料模具07-10
如何降低模具成本-降低模具成本的方法06-23