試論認知計算機輔助工藝設計與人工智能
論文關鍵字:計算機輔助工藝設計(CAPP) 人工智能(AI)
論文摘要:隨著計算機技術的發展和應用,制造也得發展已經離不開計算機了,計算機輔助工藝設計和人工智能應運而生,當很多非專業性人士對此概念十分模糊,本文初步解釋兩個概念和其應用范圍。
計算機輔助工藝設計(CAPP:Computer Aided ProeessPlanning),自1965年由挪威人Nikbel提出以來,其系統特性經歷了檢索式、派生式、混合式、創成式、智能化等過程,智能化CAPP是當前CAPP系統的研究熱點。CAPP是現代制造業信息化的一部分,是計算機集成制造系統(CIMS:Computer IntegratedManufacturing Systems)中的橋梁和紐帶。“人工智能”(Artificial Intelligence)簡稱AI。它是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智能研究如何用計算機去模擬、延伸和擴展人的智能;如何把計算機用得更聰明;如何設計和建造具有高智能水平的計算機應用系統;如何設計和制造更聰明的計算機以及智能水平更高的智能計算機等。人工智能是相對于人類智能而言的,它是采用人工的方法和技術來模擬、延伸和擴展人類智能行為的一門綜合學科。
將人工智能技術(AI技術)應用到CAPP系統開發中,使CAPP系統在知識獲取、知識推理等方面模擬人的思維方式,解決復雜的工藝規程設計問題,使其具有人類“智能”的特性即為智能化CAPP,是AI在CAPP中的一種應用。
CAPP系統分為專用型和工具型系統。前者可以根據用戶的特定需求定制開發,針對性強,具有較好的實用性,但對系統進行功能擴展困難;后者可以由用戶根據自身特定的要求進行二次開發,可以實現更多的柔性和開放性,這種系統與CAD(計算機輔助設計)、CAM(計算機輔助制造)、PDM(產品數據管理)等系統的信息共享存在缺陷。
CAPP設計理論目前研究的很少,機械產品設計理論研究的較多,有學者認為設計理論與方法由設計理論基礎層、設計工具和支持技術平臺層等三大部分組成。有的學者提出四理論框架,即設計過程理論、性能需求理論、知識流理論和多方利益協調理論。CAPP設計理論與機械產品設計理論既有共同性又有特殊性,特別在智能化設計方法方面有較大的差別,因此認為面向智能化的CAPP設計理論與方法體系結構由有三層組成,即基礎科學層、信息技術層和智能化設計方法層。
在機械產品工藝設計中,存在大量的不確定因素,許多問題需要靠經驗來解決,早期建立在單純依賴于成組技術基礎上的CAPP系統,不能很好地解決這些離散知識的獲取問題,只能設計出檢索式或派生式系統。近年來,人工智能技術在CAPP系統
開發中的應用,使CAPP技術得到了較大的發展,人工神經網絡技術就是AI在CAPP系統中一大應用。人工神經網絡(ANN: ArtificialNeuralNetwork)是按照生物神經系統原理處理真實世界的客觀事物,它由大量的簡單的非線性處理單元高度并聯而成,具有信息的分布式存儲、并行處理、自組織和自學習及聯想記憶等特性;多層前饋網絡誤差反向傳播(ErrorBack Propagation,簡稱BP)算法。反向傳播算法(BP)是一種監督訓練多層神經網絡的算法,每一個訓練范例在網絡中經過兩遍傳遞計算:第一遍向前推算,從輸入層開始,傳遞各層并經過處理后,產生一個輸出,并得到一個該實際輸出和所需輸出之差的差錯矢量;第二遍向后推算,從輸出層至輸入層,利用差錯矢量對權值進行逐層修改。
AI在CAPP中的另一應用——粗糙集技術。粗糙集(RS:Rough Set)理論是一種擅長處理含糊和不確定問題的數學工具,在理論中“知識”被認為是一種對對象的分類能力,通常采用二維決策表來描述論域的信息,其中列表示屬性,行表示對象,每行表示該對象的一條信息。屬性分為條件屬性和決策屬性,論域中的對象根據條件屬性的不同,被劃分到具有不同決策屬性的決策類中。在CAPP系統中,可以用RS理論構建專家系統,對知識進行獲取及優化,其基本思路是:將各種零件的加工特征和已知加工方法表達成條件屬性和決策屬性的形式,一行表示一種零件,多種零件構成一個二維表,對屬性進行量化,組織決策表,再采用一定的約簡算法對屬性集和屬性值進行約簡,去掉冗余的條件屬性和決策規則,得到最小化決策規則集,當輸入待加工的零件加工特征時,就可得到優化的加工工藝。
遺傳算法,AI在CAPP系統的又一應用。遺傳算法(Genetic Algorithm)是模擬達爾文遺傳選擇和自然淘汰的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。遺傳算法是從代表問題可能潛在解集的一個種群開始的,而一個種群則由經過基因編碼的一定數目的個體組成,每個個體實際上是帶有染色體特征的實體。因此,在一開始需要實現從表現型到基因型的映射即編碼工作,如二進制編碼。初代種群產生之后,按照適者生存和優勝劣汰的原理,逐代演化產生出越來越好的近似解,在每一代,根據問題域中個體的適應度大小挑選個體,并借助于自然遺傳學的遺傳算子進行組合交叉和變異,產生代表新的解集的種群。這個過程將導致種群像自然進化一樣的后生代種群比前代更加適應于環境,末代種群中的最優個體經過解碼,可以作為問題近似最優解。
智能化CAPP系統開發中還有模糊推理、混沌理論等智能化方法,實際應用中,往往將多種智能技術相互結合,綜合運用,發揮各自的特長,如人工神經網絡具有知覺形象思維的特性,而模糊推理等具有邏輯思維的特性,將這些方法相互滲透和結合,可起到互補的作用,提高智能化水平。
智能化是今后CAPP系統發展的主要趨勢,但從目前的人工智能技術水平來看,不可能使CAPP系統在智能化水平上有實質性的突破,因為目前的人工智能技術主要是模擬人的邏輯思維和邏輯推理方面的能力,不能有效地模擬人的形象思維、抽象思維和創造性思維能力,而CAPP系統不僅要有推理的功能,還要有“聯想”的功能, CAPP系統開發是要解決大量的人類思維活動方面的智能問題。因此要提高CAPP系統的智能化水平,必須在人工智能技術方面有新的發展,要解決人工智能技術方面的問題,必須在一些基礎
理論和基礎科學方面有新的突破,如在生命科學、數學等方面要有新的突破。由此可見,在可以預見的將來,智能化CAPP系統的發展仍將是在充分發揮人的智能優勢的基礎上,綜合應用各種人工智能技術,實現CAPP系統的智能化。
通過以上論述,相信大家對計算機輔助工藝設計與人工智能以及AI在CAPP中的應用有了一定的了解。人工智能技術的不斷發展,智能化CAPP系統必將在知識獲取、表達和處理的靈活性和有效性上得到進一步的發展,提高CAPP系統的智能化水平,從而提高現代制造技術水平,是我國由制造大國成為制造強國。
參考文獻:
。1]鄭堅, 面向智能化的CAPP設計理論與方法研究,江西藍天學院學報;
。2]王杰教授四川大學08級機制專業討論課;
【試論認知計算機輔助工藝設計與人工智能】相關文章:
試論計算機輔助教學課件的設計與實踐12-05
試論計算機輔助英語口語測試形式評析12-04
試論計算機輔助教學在數學課堂中的作用12-11
計算機輔助技術與機械設計研究論文02-16
有關對計算機輔助藝術設計教學的思考11-21
計算機輔助在服裝設計教學的運用論文02-17
機械設計制造中的計算機輔助技術研究03-27
計算機輔助的實例教學探析03-28
- 相關推薦