高中數學答題技巧
審題是解題的第一步,如果在第一步出現錯誤,那么你一定會失分.我發現同學們在解答概率題時由于審題不夠細心,導致類型定位不準、情況出現重復或者遺漏等錯誤比較普遍.今特選幾道有代表性的例子予以分析,望大家引以為戒.
一、主觀臆斷導致錯誤
例1從裝有36粒藥丸的瓶中,隨意倒出若干粒(至少一粒),則倒出奇數粒的概率與倒出偶數粒的概率的大小關系為().
(A)倒出奇數粒的概率大
(B)倒數奇數粒的概率小
(C)二者相等
(D)不能確定
錯解:因為倒出的是奇數粒還是偶數粒機會相等,即倒出奇數粒的概率與倒出偶數粒的概率都為 .故選(C).
剖析:這是一個等可能概率類型,因為任何一粒藥丸都有倒出與不倒出兩種可能,所以總的`基本事件個數為 ,其中倒出的為奇數粒的事件數為 ,倒出偶數粒的事件數為 .所以應選(A).本題如果允許倒出0粒,選(C)就是正確的了,都是“至少一粒”惹的禍!
二、混淆類型導致錯誤
例2某家庭電話,打進的電話響第一聲時被接的概率為 ,響第二聲時被接的概率為 ,響第三聲時被接的概率為 ,響第四聲時被接的概率為 ,則電話在響前四聲內被接的概率為().
(A) (B) (C) (D)
錯解:記打進的電話響第一聲時被接為事件A,打進的電話響第二聲時被接為事件B,打進的電話響第三聲時被接為事件C,打進的電話響第四聲時被接為事件D.則電話在響前四聲內被接的概率
.故選(C).
剖析:以上求解過程中錯誤地將A、B、C、D四個事件的關系理解為相互依賴的條件概率,而實際它們之間是彼此互斥的.所以電話在響前四聲內被接的概率 .故選(B).
三、遺漏情況導致錯誤
例3某種產品有2只次品和3只正品,每只產品均不相同,需要進行科學測試才能區分出來,今每次取出一只測試.通過三次測試,2只次品被檢測出來的概率為多少?
錯解:這是一個等可能的概率類型.記“所取的三件產品恰有兩件次品”為事件A.完成事件A共有 種不同方法.而從5件產品中任取3件共有 種不同取法.所以所求事件概率為 .
剖析:以上解法中忽略了對適合要求的事件B:“所取出的三件產品均為正品”的考慮,即出現了漏解現象.因此所求事件的概率為 .
四、重復計算導致錯誤
例4從5 名男生和2名女生中選3人參加演講比賽.求所選3人中至少有一名女生的概率.
錯解:該題是一道等可能事件的概率類型.所有的基本事件個數為,其中適合要求的事件個數分兩步求積:①從2名女生中先選1人,有 種不同方法;②再從余下的6名學生中任選2人,有 種不同方法.故所求概率為 .
【高中數學答題技巧】相關文章:
中考歷史問答題答題技巧07-22
中考物理問答題答題技巧07-18
考研英語答題技巧06-16
中考數學答題技巧07-21
中考物理答題技巧07-20
雅思聽力答題技巧08-07
2018考研答題技巧12-14
考研數學答題技巧01-15
中考物理簡答題的答題技巧07-22
中考物理復習簡答題答題技巧07-14