第一種:推演法。提示條件中給出一些條件或者一些數值,你很容易判斷,那這樣的題就用推演法去做。推演法實際上是一些計算題,簡單一點的計算題。那么從提示條件中往后推,推出哪個結果選擇哪個。
第二種:賦值法。給一個數值馬上可以判斷我們這種做法對不對,這個值可以加在給出的條件上,也可以加在被選的4個答案中的其中幾個上,我們加上去如果得出和我們題設的條件矛盾,或者是和我們已知的事實相矛盾。比方說2小于1就是明顯的錯誤,所以把這些排除了,排除掉3個最后一個肯定是正確的。
第三種:舉反例排除法。這是針對提示中給出的函數是抽象的函數,抽象的對立面是具體,所以我們用具體的例子來核定,這個跟我們剛才的賦值法有某種相似之處。一般來講舉的范例是越簡單越好,而且很多考題你只要簡單的看就可以看出他的錯誤點。
第五種:類推。從最后被選的答案中往前推,推出哪個錯誤就把哪個否定掉,再換一個。我們推出3個錯誤最后一個肯定是正確的。后面三種方法有些相似之處,類推法這種方法是費時費力的,一般來講我們不太用。
總結:經常進行自我總結,錯題總結能逐漸提高解題能力。大家可以在學完每一章后,自己通過畫圖的形式回憶這章有哪些知識點,有哪些定理,他們之間有些什么聯系,如何應用等;對做錯的題分析一下原因:概念不清楚、定理用錯了還是計算粗心?數學思維方法是數學的精髓,只有對此進行歸納、領會、應用,才能把數學知識與技能轉化為分析問題、解決問題的能力,使解題能力“更上一層樓”。