新一輪的備考復習已經在緊鑼密鼓的進行中。目前,眾多考研數學的同學對現在基礎階段數學該如何復習,高數該從哪里入手學習之類的問題較為迷茫。下面,YJBYS考研網就高等數學的復習方法給考生們做出如下幾點建議。
考研高等數學復習目標及資料選擇
數學備考一定要有一個復習時間表,也就是要有一個周密可行的計劃。按照計劃,循序漸進,切忌搞突擊,臨時抱佛腳。高數這門課在數學一和數學三中占56%,在數學二中比例高達78%,因此高數在考研中的重要性是不言而喻的,那么在現階階段我們又該做些什么呢?
建議大家在現階段復習高數的重點集中在函數、極限和連續這兩個模塊。高等數學部分的主體由函數、極限和連續、一元函數的微積分、多元函數的微積分、微分方程和級數五大模塊構成(數學一、二、三在各個模塊的要求有一定差異),從歷年的試題中,高等數學的考查重點和難點更多的集中在前兩個模塊,他們既是考試的重點,也是學好后面模塊的基礎。
此外,建議這一階段復習以教材為主,數學一、二的考生建議使用同濟版高等數學、數學三同學推薦趙樹嫄的《微積分》(第3版),中國人民大學出版社。當教材習題對你而言沒有太大困難的時候,可以參考一本基礎階段的考研輔導講義,比較推薦的是國家行政學院出版社出版的,李永樂的復習全書,或北京理工大學出版社出版,張宇、蔡燧林主編的輔導講義。
理解概念掌握定理
數學中有很多概念。概念反映的是事物的本質,弄清楚了它是如何定義的、有什么性質,才能真正地理解一個概念。所有的問題都在理解的基礎上才能做好。在這里提出幾個易混淆的概念,建議同學們在復習的時候要特別注意:連續,可導,存在原函數,可積,可微,偏導數存在他們之間的關系式怎么樣的?存在極限,導函數連續,左連續,右連續,左極限,右極限,左導數,右導數,導函數的左極限,導函數的右極限。
定理是一個正確的命題,分為條件和結論兩部分。對于定理除了要掌握它的條件和結論以外,還要搞清它的適用范圍,做到有的放矢。如羅爾定理:設函數f(x)在閉區間[a,b]上連續(其中a不等于b),在開區間 (a,b)上可導,且f(a)=f(b),那么至少存在一點ξ∈(a、b),使得 f'(ξ)=0。羅爾定理是以法國數學家羅爾的名字命名的。羅爾定理的三個已知條件的意義,⒈f(x)在[a,b]上連續表明曲線連同端點在內是無縫隙的 曲線;⒉f(x)在內(a,b)可導表明曲線y=f(x)在每一點處有切線存在;⒊f(a)=f(b)表明曲線的割線(直線AB)平行于x軸;羅爾定理的 結論的直幾何意義是:在(a,b)內至少能找到一點ξ,使f'(ξ)=0,表明曲線上至少有一點的切線斜率為0,從而切線平行于割線AB,與x軸平行。
教材習題要做熟
提醒考生們注意,課本上的例題都是很典型的,有助于理解概念和掌握定理,要注意不同例題的特點和解法在理解例題的基礎上作適量的習題。作題時要善于總結---- 不僅總結方法,也要總結錯誤。這樣,作完之后才會有所收獲,才能舉一反三。
考研高數中蘊含著三大運算:求極限、求導數和求不定積分,它們是貫穿于整個高等數學的靈魂,因此建議大家在在基礎階段集中訓練這三種運算,尤其是不定積分和求極限,它們的難度比較大。對這三種運算的熟練程度直接決定了你的考研高數部分的得分。
從宏觀上理清脈絡
要對所學的知識有個整體的把握,及時總結知識體系,這樣不僅可以加深對知識的理解,還會對進一步的學習有所幫助。
高等數學中包括微積分和立體解析幾何,級數和常微分方程。其中尤以微積分的內容最為系統且在其他課程中有廣泛的應用。微積分的理論,是由牛頓和萊布尼茨完成的。(當然在他們之前就已有微積分的應用,但不夠系統)