雞兔同籠應(yīng)用題解答技巧
許多小學(xué)算術(shù)應(yīng)用題和填空題都可以轉(zhuǎn)化成這類問題,或者用解它的典型解法--"假設(shè)法"來求解。因此很有必要學(xué)會(huì)它的解法和思路。以下是小編整理的雞兔同籠應(yīng)用題解答技巧,希望可以幫助大家!
【含義】這是古典的算術(shù)問題。已知籠子里雞、兔共有多少只和多少只腳,求雞、兔各有多少只的'問題,叫做第一雞兔同籠問題。已知雞兔的總數(shù)和雞腳與兔腳的差,求雞、兔各是多少的問題叫做第二雞兔同籠問題。
【數(shù)量關(guān)系】第一雞兔同籠問題:
假設(shè)全都是雞,則有兔數(shù)=(實(shí)際腳數(shù)-2×雞兔總數(shù))÷(4-2)
假設(shè)全都是兔,則有雞數(shù)=(4×雞兔總數(shù)-實(shí)際腳數(shù))÷(4-2)
第二雞兔同籠問題:
假設(shè)全都是雞,則有兔數(shù)=(2×雞兔總數(shù)-雞與兔腳之差)÷(4+2)
假設(shè)全都是兔,則有雞數(shù)=(4×雞兔總數(shù)+雞與兔腳之差)÷(4+2)
【解題思路和方法】解答此類題目一般都用假設(shè)法,可以先假設(shè)都是雞,也可以假設(shè)都是兔。如果先假設(shè)都是雞,然后以兔換雞;如果先假設(shè)都是兔,然后以雞換兔。這類問題也叫置換問題。通過先假設(shè),再置換,使問題得到解決。
例1 長(zhǎng)毛兔子蘆花雞,雞兔圈在一籠里。數(shù)數(shù)頭有三十五,腳數(shù)共有九十四。請(qǐng)你仔細(xì)算一算,多少兔子多少雞?
解假設(shè)35只全為兔,則雞數(shù)=(4×35-94)÷(4-2)=23(只)
兔數(shù)=35-23=12(只)
也可以先假設(shè)35只全為雞,則兔數(shù)=(94-2×35)÷(4-2)=12(只)
雞數(shù)=35-12=23(只)
答:有雞23只,有兔12只。
例2 2畝菠菜要施肥1千克,5畝白菜要施肥3千克,兩種菜共16畝,施肥9千克,求白菜有多少畝?
解此題實(shí)際上是改頭換面的“雞兔同籠”問題。“每畝菠菜施肥(1÷2)千克”與“每只雞有兩個(gè)腳”相對(duì)應(yīng),“每畝白菜施肥(3÷5)千克”與“每只兔有4只腳”相對(duì)應(yīng),“16畝”與“雞兔總數(shù)”相對(duì)應(yīng),“9千克”與“雞兔總腳數(shù)”相對(duì)應(yīng)。假設(shè)16畝全都是菠菜,則有
白菜畝數(shù)=(9-1÷2×16)÷(3÷5-1÷2)=10(畝)
答:白菜地有10畝。
例3 李老師用69元給學(xué)校買作業(yè)本和日記本共45本,作業(yè)本每本3.20元,日記本每本0.70元。問作業(yè)本和日記本各買了多少本?
解此題可以變通為“雞兔同籠”問題。假設(shè)45本全都是日記本,則有
作業(yè)本數(shù)=(69-0.70×45)÷(3.20-0.70)=15(本)
日記本數(shù)=45-15=30(本)
答:作業(yè)本有15本,日記本有30本。
例4 (第二雞兔同籠問題)雞兔共有100只,雞的腳比兔的腳多80只,問雞與兔各多少只?
解假設(shè)100只全都是雞,則有
兔數(shù)=(2×100-80)÷(4+2)=20(只)
雞數(shù)=100-20=80(只)
答:有雞80只,有兔20只。
例5 有100個(gè)饃100個(gè)和尚吃,大和尚一人吃3個(gè)饃,小和尚3人吃1個(gè)饃,問大小和尚各多少人?
解假設(shè)全為大和尚,則共吃饃(3×100)個(gè),比實(shí)際多吃(3×100-100)個(gè),這是因?yàn)榘研『蜕幸菜愠闪舜蠛蜕校虼宋覀冊(cè)诒WC和尚總數(shù)100不變的情況下,以“小”換“大”,一個(gè)小和尚換掉一個(gè)大和尚可減少饃(3-1/3)個(gè)。因此,共有小和尚(3×100-100)÷(3-1/3)=75(人)
共有大和尚100-75=25(人)
答:共有大和尚25人,有小和尚75人。
【雞兔同籠應(yīng)用題解答技巧】相關(guān)文章:
雞兔同籠應(yīng)用題及答案07-14
小學(xué)雞兔同籠類型應(yīng)用題及答案11-15
小學(xué)奧數(shù)雞兔同籠應(yīng)用題習(xí)題精選11-23
GRE閱讀題解答技巧10-11
GMAT語法解答技巧梳理11-20
GMAT邏輯題解答技巧06-28