- 相關(guān)推薦
提高數(shù)學(xué)成績(jī)的19種解題方法
中小學(xué)數(shù)學(xué)以及奧數(shù),在學(xué)習(xí)方面要求方法適宜,有了好的方法和思路,就會(huì)事半功倍!今天,小編們就來和大家分享19種小學(xué)數(shù)學(xué)解題方法,希望可以幫助各位同學(xué)快速提高數(shù)學(xué)成績(jī)。
一、形象思維方法
形象思維方法是指人們用形象思維來認(rèn)識(shí)、解決問題的方法。它的思維基礎(chǔ)是具體形象,并從具體形象展開來的思維過程。
形象思維的主要手段是實(shí)物、圖形、表格和典型等形象材料。它的認(rèn)識(shí)特點(diǎn)是以個(gè)別表現(xiàn)一般,始終保留著對(duì)事物的直觀性。它的思維過程表現(xiàn)為表象、類比、聯(lián)想、想象。它的思維品質(zhì)表現(xiàn)為對(duì)直觀材料進(jìn)行積極想象,對(duì)表象進(jìn)行加工、提煉進(jìn)而提示出本質(zhì)、規(guī)律,或求出對(duì)象。它的思維目標(biāo)是解決實(shí)際問題,并且在解決問題當(dāng)中提高自身的思維能力。
1、實(shí)物演示法
利用身邊的實(shí)物來演示數(shù)學(xué)題目的條件和問題,及條件與條件,條件與問題之間的關(guān)系,在此基礎(chǔ)上進(jìn)行分析思考、尋求解決問題的方法。
這種方法可以使數(shù)學(xué)內(nèi)容形象化,數(shù)量關(guān)系具體化。比如:數(shù)學(xué)中的相遇問題。通過實(shí)物演示不僅能夠解決“同時(shí)、相向而行、相遇”等術(shù)語,而且為學(xué)生指明了思維方向。再如,在一個(gè)圓形(方形)水塘周圍栽樹問題,如果能進(jìn)行一個(gè)實(shí)際操作,效果要好得多。
二年級(jí)數(shù)學(xué)教材中,“三個(gè)小朋友見面握手,每?jī)扇宋找淮,共要握幾次?rdquo;與“用三張不同的數(shù)字卡片擺成兩位數(shù),共可以擺成多少個(gè)兩位數(shù)”。像這樣的有關(guān)排列、組合的知識(shí),在小學(xué)教學(xué)中,如果實(shí)物演示的方法,是很難達(dá)到預(yù)期的教學(xué)目標(biāo)的。
特別是一些數(shù)學(xué)概念,如果沒有實(shí)物演示,小學(xué)生就不能真正掌握。長(zhǎng)方形的面積、長(zhǎng)方體的認(rèn)識(shí)、圓柱的體積等的學(xué)習(xí),都依賴于實(shí)物演示作思維的基礎(chǔ)。
所以,小學(xué)數(shù)學(xué)教師應(yīng)盡可能多地制作一些數(shù)學(xué)教(學(xué))具,而且這些教(學(xué))具用過后要好好保存,可以重復(fù)使用。這樣可以有效地提高課堂教學(xué)效率,提升學(xué)生的學(xué)習(xí)成績(jī)。
2、圖示法
借助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法。
圖示法直觀可靠,便于分析數(shù)形關(guān)系,不受邏輯推導(dǎo)限制,思路靈活開闊,但圖示依賴于人們對(duì)表象加工整理的可靠性上,一旦圖示與實(shí)際情況不相符,易使在此基礎(chǔ)上的聯(lián)想、想象出現(xiàn)謬誤或走入誤區(qū),最后導(dǎo)致錯(cuò)誤的結(jié)果。比如有的數(shù)學(xué)教師愛徒手畫數(shù)學(xué)圖形,難免造成不準(zhǔn)確,使學(xué)生產(chǎn)生誤解。
在課堂教學(xué)當(dāng)中,要多用圖示的方法來解決問題。有的題目,圖畫出來了,結(jié)果也就出來的;有的題,圖畫好了,題意學(xué)生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。
3、列表法
運(yùn)用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法。列表法清晰明了,便于分析比較、提示規(guī)律,也有利于記憶。它的局限性在于求解范圍小,適用題型狹窄,大多跟尋找規(guī)律或顯示規(guī)律有關(guān)。比如,正、反比例的內(nèi)容,整理數(shù)據(jù),乘法口訣,數(shù)位順序等內(nèi)容的教學(xué)大都采用“列表法”。
用列表法解決傳統(tǒng)數(shù)學(xué)問題:雞兔同籠問題。制作三個(gè)表格:第一張表格是逐一舉例法,根據(jù)雞與兔共20只的條件,假設(shè)雞只有1只,那么兔就有19只,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個(gè)以后發(fā)現(xiàn)了只數(shù)與腿數(shù)的規(guī)律,從而減少了列舉的次數(shù);第三張表格是從中間開始列舉,由于雞與兔共20只,所以各取10只,接著根據(jù)實(shí)際的數(shù)據(jù)情況確定列舉的方向。
4、探索法
按照一定方向,通過嘗試來摸索規(guī)律、探求解決問題思路的方法叫做探究法。我國(guó)著名數(shù)學(xué)家華羅庚說過,在數(shù)學(xué)里,“難處不在于有了公式去證明,而在于沒有公式之前,怎樣去找出公式來。”蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個(gè)發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界中,這種需要特別強(qiáng)烈。“學(xué)習(xí)要以探究為核心”,是新課程的基本理念之一。人們?cè)陔y以把問題轉(zhuǎn)化為簡(jiǎn)單的、基本的、熟悉的、典型的問題時(shí),常常采取的一種好方法就是探究、嘗試。
第一、探究方向要準(zhǔn)確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學(xué)“比例尺”時(shí),教師創(chuàng)設(shè)“學(xué)生出題考老師”的教學(xué)情境,師:“現(xiàn)在我們考試好不好?”學(xué)生一聽:很奇怪,正當(dāng)學(xué)生疑惑之時(shí),教師說:“今天改變過去的考試方法,由你們出題考老師,愿意嗎?”學(xué)生聽后很感興趣。教師說:“這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實(shí)際距離,相信嗎?”于是學(xué)生紛紛上臺(tái)度量、報(bào)數(shù),教師都一個(gè)接一個(gè)地回答對(duì)應(yīng)的實(shí)際距離。學(xué)生這時(shí)更感到奇怪,異口同聲地說:“老師您快告訴我們吧,您是怎樣算的?”教師說:“其實(shí)呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認(rèn)識(shí)它嗎?”于是引出所要學(xué)習(xí)的內(nèi)容“比例尺”。
第二、定向猜測(cè),反復(fù)實(shí)踐,在不斷分析、調(diào)整中尋找規(guī)律。
第三,獨(dú)立探究與合作探究結(jié)合。獨(dú)立,有自由的思維時(shí)空;合作,可以知識(shí)上互補(bǔ),方法上互相借鑒,不時(shí)還能碰撞出智慧的火花。
5、觀察法
通過大量具體事例,歸納發(fā)現(xiàn)事物的一般規(guī)律的方法叫做觀察法。巴浦洛夫說:"應(yīng)當(dāng)先學(xué)會(huì)觀察,不學(xué)會(huì)觀察永遠(yuǎn)當(dāng)不了科學(xué)家。”
小學(xué)數(shù)學(xué)“觀察”的內(nèi)容一般有:①數(shù)字的變化規(guī)律及位置特點(diǎn);②條件與結(jié)論之間的關(guān)系;③題目的結(jié)構(gòu)特點(diǎn);④圖形的特點(diǎn)及大小、位置關(guān)系。
如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出乘法交換率:在乘法算式里,交換兩個(gè)因數(shù)的位置,積不變。
“觀察”的要求:
第一、觀察要細(xì)致、準(zhǔn)確。
第二、科學(xué)觀察。科學(xué)觀察滲透了更多的理性因素,它是有目的,有計(jì)劃地察看研究對(duì)象。比如,在教學(xué)長(zhǎng)方體的認(rèn)識(shí)時(shí),要做到“有序”觀察:(1)面——形狀、個(gè)數(shù)、面與面之間的關(guān)系;(2)棱——棱的形成、條數(shù)、棱與棱之間的關(guān)系(相對(duì)的棱相等;相對(duì)的棱有四條;長(zhǎng)方體的棱可以分為三組);(3)頂點(diǎn)——頂點(diǎn)的形成、個(gè)數(shù),認(rèn)識(shí)頂點(diǎn)的一個(gè)重要作用是引出長(zhǎng)方體長(zhǎng)、寬、高的概念。
6、典型法
針對(duì)題目去聯(lián)想已經(jīng)解過的典型問題的解題規(guī)律,從而找出解題思路的方法叫做典型法。典型是相對(duì)于普遍而言的。解決數(shù)學(xué)問題,有些需要用一般方法,有些則需要用特殊(典型)方法。比如,歸一、倍比和歸總算法、行程、工程、消同求異、平均數(shù)等。
運(yùn)用典型法必須注意:
(1)要掌握典型材料的關(guān)鍵及規(guī)律。
(2)熟悉典型材料,并能敏捷地聯(lián)想到所適用的典型,從而確定所需要的解題方法。
(3)典型和技巧相聯(lián)系。
7、放縮法
通過對(duì)被研究對(duì)象的放縮估計(jì)來解決問題的方法叫做放縮法。放縮法靈活、巧妙,但有賴于知識(shí)的拓展能力及其想象能力。
思路一:“放大”。通過觀察發(fā)現(xiàn),語、數(shù)、外三科成績(jī)?cè)陬}目中各出現(xiàn)兩次,我們求197+199+196的和,這個(gè)和是“語數(shù)外成績(jī)的2倍”,除以2得三科成績(jī)之和,再減去任意兩科的成績(jī),就得到第三科的成績(jī)。
思路二:“縮小”。我們用語數(shù)成績(jī)的和減去語外的成績(jī),199-197=2(分),這是數(shù)學(xué)減英語成績(jī)的差。數(shù)學(xué)和英語的和是196分,再求數(shù)學(xué)的分?jǐn)?shù)就不難了。
放縮法有時(shí)運(yùn)用在估算和驗(yàn)算上。
8、驗(yàn)證法
你的結(jié)果正確嗎?不能只等教師的評(píng)判,重要的是自己心里要清楚,對(duì)自己的學(xué)習(xí)有一個(gè)清楚的評(píng)價(jià),這是優(yōu)秀學(xué)生必備的學(xué)習(xí)品質(zhì)。
驗(yàn)證法應(yīng)用范圍比較廣泛,是需要熟練掌握的一項(xiàng)基本功。應(yīng)當(dāng)通過實(shí)踐訓(xùn)練及其長(zhǎng)期體驗(yàn)積累,不斷提高自己的驗(yàn)證能力和逐步養(yǎng)成嚴(yán)謹(jǐn)細(xì)致的好習(xí)慣。
(1)用不同的方法驗(yàn)證。教科書上一再提出:減法用加法檢驗(yàn),加法用減法檢驗(yàn),除法用乘法驗(yàn)算,乘法用除法驗(yàn)算。
(2)代入檢驗(yàn)。解方程的結(jié)果正確嗎?用代入法,看等號(hào)兩邊是否相等。還可以把結(jié)果當(dāng)條件進(jìn)行逆向推算。
(3)是否符合實(shí)際。“千教萬教教人求真,千學(xué)萬學(xué)學(xué)做真人”陶行知先生的話要落實(shí)在教學(xué)中。比如,做一套衣服需要4米布,現(xiàn)有布31米,可以做多少套衣服?有學(xué)生這樣做:31÷4≈8(套)
按照“四舍五入法”保留近似數(shù)無疑是正確的,但和實(shí)際不符合,做衣服的剩余布料只能舍去。教學(xué)中,常識(shí)性的東西予以重視。做衣服套數(shù)的近似計(jì)算要用“去尾法”。
(4)驗(yàn)證的動(dòng)力在猜想和質(zhì)疑。牛頓曾說過:“沒有大膽的猜想,就做不出偉大的發(fā)現(xiàn)。”“猜”也是解決問題的一種重要策略?梢蚤_拓學(xué)生的思維、激發(fā)“我要學(xué)”的愿望。為了避免瞎猜,一定學(xué)會(huì)驗(yàn)證。驗(yàn)證猜測(cè)結(jié)果是否正確,是否符合要求。如不符合要求,及時(shí)調(diào)整猜想,直到解決問題。
二、抽象思維方法
運(yùn)用概念、判斷、推理來反映現(xiàn)實(shí)的思維過程,叫抽象思維,也叫邏輯思維。
抽象思維又分為:形式思維和辯證思維?陀^現(xiàn)實(shí)有其相對(duì)穩(wěn)定的一面,我們就可以采用形式思維的方式;客觀存在也有其不斷發(fā)展變化的一面,我們可以采用辯證思維的方式。形式思維是辯證思維的基礎(chǔ)。
形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。
辯證思維能力:聯(lián)系、發(fā)展變化、對(duì)立統(tǒng)一律、質(zhì)量互變律、否定之否定律。
小學(xué)、中學(xué)數(shù)學(xué)要培養(yǎng)學(xué)生初步的抽象思維能力,重點(diǎn)突出在:
(1)思維品質(zhì)上,應(yīng)該具備思維的敏捷性、靈活性、聯(lián)系性和創(chuàng)造性。
(2)思維方法上,應(yīng)該學(xué)會(huì)有條有理,有根有據(jù)地思考。
(3)思維要求上,思路清晰,因果分明,言必有據(jù),推理嚴(yán)密。
(4)思維訓(xùn)練上,應(yīng)該要求:正確地運(yùn)用概念,恰當(dāng)?shù)叵屡袛,合乎邏輯地推理?/p>
9、對(duì)照法
如何正確地理解和運(yùn)用數(shù)學(xué)概念?小學(xué)數(shù)學(xué)常用的方法就是對(duì)照法。根據(jù)數(shù)學(xué)題意,對(duì)照概念、性質(zhì)、定律、法則、公式、名詞、術(shù)語的含義和實(shí)質(zhì),依靠對(duì)數(shù)學(xué)知識(shí)的理解、記憶、辨識(shí)、再現(xiàn)、遷移來解題的方法叫做對(duì)照法。
這個(gè)方法的思維意義就在于,訓(xùn)練學(xué)生對(duì)數(shù)學(xué)知識(shí)的正確理解、牢固記憶、準(zhǔn)確辨識(shí)。
10、公式法
運(yùn)用定律、公式、規(guī)則、法則來解決問題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡(jiǎn)便、有效,也是小學(xué)生學(xué)習(xí)數(shù)學(xué)必須學(xué)會(huì)和掌握的一種方法。但一定要讓學(xué)生對(duì)公式、定律、規(guī)則、法則有一個(gè)正確而深刻的理解,并能準(zhǔn)確運(yùn)用。
11、比較法
通過對(duì)比數(shù)學(xué)條件及問題的異同點(diǎn),研究產(chǎn)生異同點(diǎn)的原因,從而發(fā)現(xiàn)解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點(diǎn)必找相異點(diǎn),找相異點(diǎn)必找相同點(diǎn),不可或缺,也就是說,比較要完整。
(2)找聯(lián)系與區(qū)別,這是比較的實(shí)質(zhì)。
(3)必須在同一種關(guān)系下(同一種標(biāo)準(zhǔn))進(jìn)行比較,這是“比較”的基本條件。
(4)要抓住主要內(nèi)容進(jìn)行比較,盡量少用“窮舉法”進(jìn)行比較,那樣會(huì)使重點(diǎn)不突出。
(5)因?yàn)閿?shù)學(xué)的嚴(yán)密性,決定了比較必須要精細(xì),往往一個(gè)字,一個(gè)符號(hào)就決定了比較結(jié)論的對(duì)或錯(cuò)。
12、分類法
俗語:物以類聚,人以群分。
根據(jù)事物的共同點(diǎn)和差異點(diǎn)將事物區(qū)分為不同種類的方法,叫做分類法。分類是以比較為基礎(chǔ)的。依據(jù)事物之間的共同點(diǎn)將它們合為較大的類,又依據(jù)差異點(diǎn)將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復(fù)、不遺漏、不交叉。
13、分析法
把整體分解為部分,把復(fù)雜的事物分解為各個(gè)部分或要素,并對(duì)這些部分或要素進(jìn)行研究、推導(dǎo)的一種思維方法叫做分析法。
依據(jù):總體都是由部分構(gòu)成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對(duì)照要求,從而理順解決問題的思路。
也就是從求解的問題出發(fā),正確選擇所需要的兩個(gè)條件,依次推導(dǎo),一直到問題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進(jìn)行圖解思路。
14、綜合法
對(duì)象的各個(gè)部分或各個(gè)方面或各個(gè)要素聯(lián)結(jié)起來,并組合成一個(gè)有機(jī)的整體來研究、推導(dǎo)和一種思維方法叫做綜合法。
用綜合法解數(shù)學(xué)題時(shí),通常把各個(gè)題知看作是部分(或要素),經(jīng)過對(duì)各部分(或要素)相互之間內(nèi)在聯(lián)系一層層分析,逐步推導(dǎo)到題目要求,所以,綜合法的解題模式是執(zhí)因?qū)Ч,也叫順推法。這種方法適用于已知條件較少,數(shù)量關(guān)系比較簡(jiǎn)單的數(shù)學(xué)題。
15、方程法
用字母表示未知數(shù),并根據(jù)等量關(guān)系列出含有字母的表達(dá)式(等式)。列方程是一個(gè)抽象概括的過程,解方程是一個(gè)演繹推導(dǎo)的過程。方程法最大的特點(diǎn)是把未知數(shù)等同于已知數(shù)看待,參與列式、運(yùn)算,克服了算術(shù)法必須避開求知數(shù)來列式的不足。有利于由已知向未知的轉(zhuǎn)化,從而提高了解題的效率和正確率。
16、參數(shù)法
用只參與列式、運(yùn)算而不需要解出的字母或數(shù)表示有關(guān)數(shù)量,并根據(jù)題意列出算式的一種方法叫做參數(shù)法。參數(shù)又叫輔助未知數(shù),也稱中間變量。參數(shù)法是方程法延伸、拓展的產(chǎn)物。
17、排除法
排除對(duì)立的結(jié)果叫做排除法。
排除法的邏輯原理是:任何事物都有其對(duì)立面,在有正確與錯(cuò)誤的多種結(jié)果中,一切錯(cuò)誤的結(jié)果都排除了,剩余的只能是正確的結(jié)果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
18、特例法
對(duì)于涉及一般性結(jié)論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。特例法的邏輯原理是:事物的一般性存在于特殊性之中。
19、化歸法
通過某種轉(zhuǎn)化過程,把問題歸結(jié)到一類典型問題來解題的方法叫做化歸法;瘹w是知識(shí)遷移的重要途徑,也是擴(kuò)展、深化認(rèn)知的首要步驟;瘹w法的邏輯原理是,事物之間是普遍聯(lián)系的。化歸法是一種常用的辯證思維方法。
【提高數(shù)學(xué)成績(jī)的19種解題方法】相關(guān)文章:
提高小升初數(shù)學(xué)成績(jī)方法08-10
公共成績(jī)快速提高方法08-13
初中數(shù)學(xué)解題方法06-02
初中數(shù)學(xué)的解題方法及復(fù)習(xí)介紹06-08